
6384 C? 72 WY

JUL 8 1971

DAVIDSON LABORATORY

Report SIT-DL-71-1536

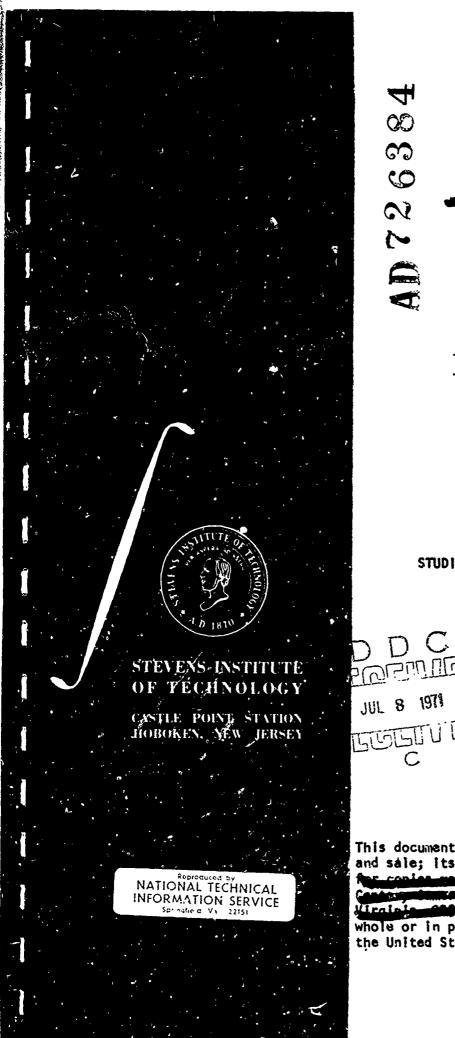
June 1971

STUDIES OF DUAL AND TANDEM RIGID WHEEL PERFORMANCE IN SAND

by

Gary D. Swanson

prepared for


Department of Defense

under

Contract DAAE-07-69-0356 (Project THEMIS)

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction of the document in whole or in part is permitted for any purpose of the United States Government.

	UNICLASSIFIED			~ •	
ź	VINCLASSIFIED				
Š	DOCUMENT CONT	ROL DATA . R	& D		
_	Security classification of title, body of abstract and indexing			overall report to classified)	
	pavidson Laboratory, Stevens Institute of Hoboken, New Jersey 07030		UNCLASSIFIED		
	Hopokeii, New Jetsey 01030		26. GROUP		
	I REPORT TITLE		L		
	STUDIES OF DUAL AND TANDEM RIGID WHEEL PE	RFORMANCE IN	SAND		
	4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
1	Final Report			····	
	5 AUTHOR(5) (First name, middle initial, last name)				
1	Gary D. Swanson				
į	6 REPORT DATE	78. TOTAL NO. O	FPAGES	76. NO. OF REFS	
ĺ	June 1971	151		13	
1	80. CONTRACT OR GRANT NO.	98. ORIGINATOR"	S REPORT NUMI	5ER(5)	
	DAAE-07-69-0356 b. project no				
1	b. PROJECT NOC-				
1					
1	c.	this report)	RT NO(5) (Any o	ther numbers that may be assigned	
	d.				
1					
1	inis document has been	approved to	r public i	release and sale; its	
	distribution is unlimited. Application for			Paradustian	
1	of the document in whole or in part is not	mitted for	andria, va	restants reproduction	
Į	of the document in whole or in part is per	12. SPONSORING	MILITARY ACTI	TOT THE N°2° POAGLUMEN	
	Details of illustrations in	Der	artment of	Defense	
	this document may be better	, ,		o. c. 20301	

Tests were conducted with five pair of wheels, three of which were geometrically similar. Four loads and three spacings were tested for each wheel pair. A dimensional analysis approach was utilized to develop general functional relationships for sinkage and motion resistance (tow force). Test data was analyzed and specific equations were developed for prediction of sinkage and resistance to motion for wheels in dual and tandem configuration. The resulting equations were compared with equations developed or discussed by Bekker. Single wheel tests were conducted and comparisons made between single wheel performance and dual or tandem wheel performance.

DD FORM 1473 (PAGE 1)

studied on microfiche

UNCLASSIFIED

Security Classification

S/N 0101-807-6811

A-3140s

SHEETH SHEETH AND STREETHEST SHEETHEST SHEETHE

10 20 M A A A	LIN	K A	LIN	K B	LIN	K C
KEY WORDS	HOLE	WT	HOLE	WY	MOLE	*
DUAL WHEELS						
LAND LOCOMOTION						
OFF-ROAD MOBILITY						
SOIL-VEHICLE RELATIONSHIPS						
TANDEM WHEELS						
				1		
	MARINETTA PERMANENTALISANAN PERMANENTANAN PERMANENTALISANAN PERMANENTAN PERMANENTALISANAN PERMANENTALI	-		 -	-	- A00
		1				
				Ì		
				İ		
			Į			
`						
·						
		1	}		1	

Security Classification

4-31409

Signal and the second s

S/N 0101-807-6821

DAVIDSON LABORATORY
Stevens Institute of Technology
Castle Point Station
Hoboken, New Jersey 07030

Report SIT-DL-71-1536

June 1971

STUDIES OF DUAL AND TANDEM RIGID WHEEL PERFORMANCE IN SAND

by

Gary D. Swanson

Prepared for
Department of Defense
under
Contract DAAE-07-69-0356
(DL Project (3683/423))

Details of illustrations in this document may be better studied on microfiche

hann yezare an betesa beberariya denebalisa.

Approved

I. Robert Ehrlich, Manager Transportation Research Group

olis Kalibeen otan varanas en men elemban men belanda betalakan mendan mendan mendan mengan kan mengan men men

ABSTRACT

Studies of Dual and Tandem Rigid Wheel Performance in Sand

by

Gary D. Swanson

Advisor

I. Robert Ehrlich

January 1971

Tests were conducted with five pair of wheels, three of which were geometrically similar. Four loads and three spacings were tested for each wheel pair. A dimensional analysis approach was utilized to develop general functional relationships for sinkage and motion resistance (tow force). Test data was analyzed and specific equations were developed for prediction of sinkage and resistance to motion for wheels in dual and landem configuration. The resulting equations were compared with equations developed or discussed by Bekker. Single wheel tests were conducted and comparisons made between single wheel performance and dual or tandem wheel performance.

KEYWORDS

Dual Wheels
Land Locomotion
Off-Road Mobility
Soil-Vehicle Relationships
Tandem Wheels

THE THE PARTY OF T

TABLE OF CONTENTS

Abstra	ct	• • • • • • • • • • • • • • • • • • • •	ii
List o	f Symbols		iv
List o	f Tables		vi
List o	f Figures	• • • • • • • • • • • • • • • • • • • •	vii
f.	INTRODUCTION	• • • • • • • • • • • • • • • • • • • •	1
11.	BACKGROUND		3
ш.	RATIONALE	• • • • • • • • • • • • • • • • • • • •	5
IV.	TEST FACILITY AN	D EQUIPMENT	12
v.	TEST PROCEDURES	• • • • • • • • • • • • • • • • • • • •	25
VI.	RESULTS	• • • • • • • • • • • • • • • • • • • •	32
VII.	ANALYSIS OF RESU	LTS	33
VIII.	CONCLUSIONS AND	RECOMMENDATIONS	83
ix.	REFERENCES	• • • • • • • • • • • • • • • • • • • •	84
x.	ACKNOWLEDGEMENTS	• • • • • • • • • • • • • • • • • • • •	86
XI.	VITA	• • • • • • • • • • • • • • • • • • • •	87
XII.	APPENDICES	• • • • • • • • • • • • • • • • • • • •	88
	Appendix 1.	Carriage Velocity, Wheel Velocity and Skid Rate Calculations	88
	Appendix II.	Calculation of Tandem Front and Rear Wheel Sinkage	89
	Appendix III.	Procedure for Combining a Terms by Multiplication	91
	Appendix IV.	Tables of Test Data	93

HERENGE IN THE CAREST AND THE CAREST AND THE CAREST AND THE PROPERTY OF THE CONTROL OF THE CAREST AND THE PROPERTY OF THE CAREST AND THE PROPERTY OF THE PROPE

CONTINUED CONTIN

ET A STREET LEET LEET TO BE TO STREET THE STREET OF THE ST

LIST OF SYMBOLS

Symbol		Dimensions
а	Number of basic equations	••
ь	Wheel width	
В	Wheel skid (dual and single wheels)	
BF	Wheel skid (front tandem wheel)	
^B R	Wheel skid (rear tandem wheel)	
С	Vertical movement of tandem mounting plate	inches
c;	Exponent of prediction equation	~-
D	Wheel diameter	inches
k _c	Cohesive soil sinkage modulus	lbs/in ^{n+l}
kφ	Frictional soil sinkage modulus	ibs/in ⁿ⁺²
ĸ.	Equation constant	
L	Tandem wheel spacing (center-to-center)	inches
٩î	Vertical movement of tandem wheel relative to pivot of the mounting plate	inches
n	Soil sinkage exponent	
N	Number of m terms	
P	Pressure	lbs/in ²
R	Hotion resistance	pounds
S	Dual wheel spacing (between adjacent faces)	inches
u	Number of parameters	+ 0
v _c	Carriage velocity	ft/sec
v _w	Wheel peripheral velocity	ft/sec

n and the contraction of the con

List of Symbols (continued)

Symbol		Dimensions
V _{wF}	Wheel peripheral velocity (front tandem wheel)	ft/sec
V _{wR}	Wheel peripheral velocity (rear tandem wheel)	ft/sec
W	Load	pounds
×	Exponent of T - equations	~-
z	Wheel sinkage (dual and single wheels)	inches
z _F	Wheel sinkage (front tandem wheel)	inches
z _R	Wheel sinkage (rear tandem wheel)	inches

THE PROPERTY OF THE PROPERTY O

BALGEROPICAERCIA CORROLLA CORROLLA CORROLLA CORRECTOR CORRECTOR CORROLLA CO

LIST OF TABLES

Table I.	Wheel Dimensions
Table II.	Summary of Dual Wheel Tests
Table III.	Summary of Tandem Wheel Tests
Table IV.	Summary of Single Wheel Tests
Table V.	$\vec{\eta}_1$ and $\vec{\eta}_4$ Values for Motion Resistance of Dual Wheels 36
Table VI.	$\tilde{\pi}_{1}$ and π_{k} Values for Motion Resistance of Yandem Wheels . 47
Table VII.	$\bar{\pi}_1$ and $\bar{\pi}_4$ Values for Sinkage of Dual Wheels 54
Table VIII.	π_1 and π_4 Values for Sinkage of Front Tandem Wheel 61
Table IX.	$\bar{\pi}_1$ and π_4 Values for Sinkage of Rear Tandem Wheel 67
Table X.	Comparison of Dual and Single Wheel Performance for Wheel Pair la
Table XI.	Comparison of Dual and Single Wheel Performance for Wheel Pair 1 _b
Table XII.	Comparison of Dual and Single Wheel Performance for Wheel Pair l
Table Xill.	Comparison of Tandem and Single Wheel Performance for Wheel Pair I a
Table XIV.	Comparison of Tandem and Single Wheel Performance for Wheel Pair Ib
Table XV.	Comparison of Tandem and Single Wheel Performance for Wheel Pair I
Tables XVI through XLIII	Data Records

TO THE THE PROPERTY OF THE PRO

LIST OF FIGURES

Figure	1.	Gyrotiller	12
Figure	2.	Geometrically Similar Wheels	13
Figure	3.	Test Apparatus in Dual Configuration	15
Figure	4.	Test Apparatus in Tandem Configuration	16
Figure	5.	Test Apparatus in Single Wheel Configuration	16
Figure	6.	Counterbalance	17
Figure	7.	Microswitch and Event Markers Used to Measure Carriage Velocity	18
Figure	8.	Microswitch Used to Measure Wheel Velocity	19
Figure	9.	Sinkage Measurement Davice	20
Figure	10.	Tandem Wheel Sinkage Measurement Device	21
Figure	11.	Soil Bin Dynamometer	22
Figure	12.	Data Record	23
Figure	13.	Plots Showing the Influence of Dual Wheel Spacing on Motion Resistance	3fr
Figure	14.	Plots Showing the Relationship Between Wheel Width and Motion Resistance of Dual Wheels	37
Figure	15.	c vs. 5 for Motion Resistance of Dual Wheels	39
Figure	16.	π_2^{I} vs. π_2 After Collapsing Lines for Similar Wheels	40
Figure	17.	π_1^r vs. π_2 for Motion Resistance of Dual Wheels	41
Figure	18.	Comparison of Equation (36) with Measured Data	44
Figure	19.	Plots Showing the Influence of Tandem Wheel Spacing on Motion Resistance	46
Figure	20.	Plots Showing the Relationship Between Wheel Width and Motion Resistance of Tandem Wheels	1;8

I

A.Lease

Time

L	į	st		of	Figures	[Cont	d]
---	---	----	--	----	---------	-------	----

Figure 21.	$\bar{\pi}_1$ vs. π_2 for Motion Resistance of Tandem Wheels .	50
Figure 22.	Comparison of Equation (45) with Measured Data	52
Figure 23.	Plots Showing the Influence of Dual Wheel Spacing on Sinkage	53
Figure 24.	Plots Showing the Relationship of Sinkage to Wheel Width for Dual Wheels	55
Figure 25.	$\bar{\pi}_1$ vs. π_2 for Dual Wheel Sinkage	57
Figure 26.	Comparison of Equation (54) with Measured Data	58
Figure 27.	Plots Showing the Influence of Tandem Wheel Spacing on the Sinkage of the Front Wheel	60
Figure 28.	Plots Showing the Relationship Between Wheel Width and the Sinkage of the Front Tandem Wheel .	62
Figure 29.	$\boldsymbol{\tilde{\pi}_1}$ vs. $\boldsymbol{\pi_2}$ for Front Tandem Wheel Sinkage	63
Figure 30.	Comparison of Equation (63) with Measured Data	65
Figure 31.	Plots Showing the Influence of Tandem Wheel Spacing on the Sinkage of the Rear Wheel	66
Figure 32.	Plots Showing the Relationship Between Wheel Width and the Sinkage of the Rear Tandem Wheel	68
Figure 33.	$\tilde{\pi}_1$ vs. π_2 for Rear Tandem Wheel Sinkage	70
Figure 34.	Comparison of Equation (71) with Measured Data	71
Figure 35.	Second Pass of Single Wheel of Wheel Pair 1_c	80
Figure 36.	Second Pass of Single Wheel of Wheel Pair l_a	80
Figure 37.	Sinkage Calculation Diagram	89

I. INTRODUCTION

A. Objective

Researchers involved with military, agricultural, construction and other off-road equipment have sought to increase the vehicle payload without substantial increases in motion resistance or sinkage. Designers of aircraft landing gear have also sought to find better methods of supporting larger aircraft on soil runways. A solution frequently employed is the utilization of many wheeis mounted in dual tandem or dual-tandem configurations. The objective of this study was to determine the effects of spacing on the performance of towed rigid wheels mounted in dual and tandem configuration. This study is therefore applicable to aircraft landing gear, towed agricultural equipment, trailers, and unpowered wheels of self-propelled vehicles only.

Within this objective, it became appropriate also to study single wheels in order to simulate infinite spacing, to yield a comparison of single wheel performance, and to compare the results obtained here with those of other researchers.

B. Approach

The method chosen to study the effects of spacing on the performance of towed rigid wheels mounted in dual or tandem configuration was a dimensional analysis approach. This approach was utilized to develop general functional relationships between significant parameters in this study (see Section III - RATIONALE). The general functional relationships were of the form:

THE THE PROPERTY IN THE REPORT OF THE PROPERTY
$$\pi_{1} = K\pi_{2}^{1} \pi_{3}^{2} \pi_{4}^{3}$$
 (1)

Experimental tests were then utilized to determine the values of K , x_1 , x_2 and x_3 for each general functional relationship. (See Section V - TEST PROCEDURES and Section VII - ANALYSIS OF RESULTS.)

THE REPORT OF THE PROPERTY OF

11. BACKGROUND

Rouch and Liljedahl² tested driven 4.00 x 8 tires in an artificial soil. Values of slip from zero to 20 percent were tested at dual spacings up to four inches. They showed that, at close spacings, the wheel sinkage and motion resistance of dual wheels decreased because each wheel had a supporting effect on the other.

Roma and McGowan as referenced by Freitag, ³ utilizing a 4x4 vehicle with 6.00x16 tires in sand, showed that, if a given load must be carried by tires of a given size, two tires are better than one; however they are not twice as good. This means that two tires operating side-by-side interact so that the individual performance of each tire is less than if it were operating independently.

Melzer and Knight⁴ showed that at 20 percent slip two wheels in a close-spaced dual-wheel configuration performed proportionately better than a single wheel with the same characteristics as each wheel of the dual-wheel configuration. Their tests were conducted in Yuma sand with 9.00-14 tires. Their results were similar to those reported by Rouch and Liljedahl.²

Other studies, 5-10 relating to tandem wheels revealed that they were conducted by driving or towing a wheel with a dynamometer and then driving or towing the same wheel again in the rut left by the first pass. The effect, therefore, was of infinite tandem spacing.

The studies reported in the previous paragraphs were concerned with performance of powered dual and tandem wheels. Performance was defined in terms of the tractive coefficient, power efficiency,

pull coefficient, and overall efficiency. These studies also utilized the same load for the single wheel configuration and the dual or tandem configuration. This study was concerned with the performance of towed dual and tandem wheels. The loads utilized for the single wheel configuration were half those utilized for the dual or tandem configuration.

Abrilmen and Salica Constances and C

an one of the second state of the second tensor of the second of the second of the second of the second of the

III. RATIONALE

A. General

A dimensional analysis approach utilizing the Buckingham Pi Theorem was used to develop general functional relationships between significant parameters in this study. The soil parameters utilized, $k_{_{\mbox{\scriptsize C}}}$, $k_{_{\mbox{\scriptsize Q}}}$ and n were those used by Bekker 11 in his pressure sinkage equation:

$$p = \left(k_{\varphi} + \frac{k_{c}}{b}\right)z^{n} \tag{2}$$

where

Taran Indian

p = pressure (pounds/inch²)

 $k_m = frictional soil value (pounds/inchⁿ⁺²)$

 $k_c = \text{cohesive soil value (pounds/inch}^{n+1})$

b = wheel width (inches)

z = sinkage (inches)

n = sinkage exponent (dimensionless)

in the conduct of a test there are certain primary and certain secondary parameters. The primary parameters are those established by the test setup; the secondary ones are those resulting from the test. In the tests conducted here, the secondary parameters studied were wheel motion resistance and wheel sinkage; wheel skid, also a secondary parameter was measured, but not analyzed. All other specified parameters will be considered primary. Thus the analysis might properly be grouped into four categories:

Motion resistance of dual wheels,

Motion resistance of tandem wheels,

Sinkage of dual wheels, and

Sinkage of tandem wheels.

It might be noted here that the failure to control skid rate (as is necessary in towed wheels) destroyed some of the geometric similarity of the experiments, thus generating modeling distortion.

B. Motion Resistance of Dual Wheels

1. Significant Parameters

<u>Parameter</u>	Symbol	Dimensions	Basic Quantity
Motion resistance	R	pounds	F
Wheel diameter	D	inches	L
Wheel width	ь	inches	L
Load	W	pounds	F
Dual wheel spacing (between adjacent faces)	5	Inches	L
Frictional soil sinkage modulus	k _φ	pounds/inch ⁿ⁻¹	FL ⁻ⁿ⁻²
Cohesive soil sinkage modulus	k _c	pounds/inch ⁿ⁺	FL ⁻ⁿ⁻¹
Soil sinkage exponent	n		

2. Development of the Functional Relationship

Thus, the wheel resistance to motion may be expressed as:

$$R = f(D,b,W,s,k_{\phi},k_{c},n)$$
 (3)

MADINATED AND PARTED AND THE PARTED BELLEVIANTED AND THE PROPERTY OF THE PARTED BELLEVIANTED BY AND THE PARTED BY
Assuming that this function is in the form of a product of these variables:

$$c_{\alpha}^{c_1} c_{\alpha}^{c_2} c_{\beta}^{c_3} w_{\beta}^{c_4} c_{\beta}^{c_5} k_{\alpha}^{c_6} k_{c}^{c_7} = 1$$
 (4)

Since n is dimensionless it may be assigned a separate π term or may be in one or more of the exponents of Equation (4).

Equation (4) may now be expressed dimensionally as:

$$F^{c_1}L^{c_2}L^{c_3}F^{c_4}L^{c_5}(FL^{-n-2})^{c_6}(FL^{-n-1})^{c_7}=F^{o}L^{o}$$
 (5)

Solving Equation (5) for the various basic quantities:

Force:
$$c_1 + c_4 + c_6 + c_7 = 0$$
 (6)

Length:
$$c_2 + c_3 + c_5 - (n+2)c_6 - (n+1)c_7 = 0$$
 (7)

Determining the number of π terms:

$$N = u - a \tag{8}$$

where: $N = number of \pi terms$

u = number of parameters

a = number of basic equations

$$N = 7 - 2 = 5 \tag{9}$$

The exponents C_2 and C_4 may be determined in terms of C_1 , C_3 , C_5 , C_6 and C_7 . To determine that the exponents are independent, the determinant of the coefficients of C_2 and C_4 must be formed and shown to be non-zero. Thus:

$$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 0 - 1 = -1$$

Since the value of this determinant is non-zero, the developed $\ \pi$ terms based on $\ C_2$ and $\ C_4$ will be independent.

The following procedure will be utilized to generate the five π terms. Each of the exponents c_1 , c_3 , c_5 , c_6 and c_7 in turn will assume a value of one while the others assume a value of zero. These values will be substituted into Equations (6) and (7). Simultaneous solution of the two resulting equations will generate one π term.

$$c_1 = 1; c_3 = c_5 = c_6 = c_7 = 0$$
(6) $1 + c_4 = 0; c_4 = -1$
(7) $c_2 = 0$
 $\therefore \pi_1 = R/W$ (10)

$$c_3 = 1; c_1 = c_5 = c_6 = c_7 = 0$$
(6) $c_4 = 0$
(7) $c_2 + 1 = 0; c_2 = -1$ $\therefore \pi_2 = b/0$ (11)

$$c_5 = 1$$
; $c_1 = c_3 = c_6 = c_7 = 0$
(6) $c_{14} = 0$
(7) $c_2 + 1 = 0$; $c_2 = -1$ $\therefore \pi_3 = s/0$ (12)

$$c_{6} = 1; c_{1} = c_{3} = c_{5} = c_{7} = 0$$

$$(6) c_{1} + 1 = 0; c_{1} = -1$$

$$(7) c_{2} - (n+2) = 0; c_{2} = n+2 : \pi_{1} = \frac{k_{0} c^{n+2}}{V}$$

$$(13)$$

$$c_7 = 1; c_1 = c_3 = c_5 = c_6 = 0$$
(6) $c_1 + 1 = 0; c_1 = -1$
(7) $c_2 - (n+1) = 0; c_2 = n+1$ $\therefore \pi_5 = \frac{k_c p^{n+1}}{W}$ (14)

it was desired to utilize the wheel width rather than the wheel diameter in the η_1 and η_5 terms. Therefore, let:

$$\eta_{4} = \eta_{4} \cdot \eta_{2}^{-} = \frac{k_{\varphi}^{-} D^{n+2}}{V} \cdot \frac{b^{n+2}}{D^{n+2}} = \frac{k_{\varphi}^{-} b^{n+2}}{V}$$
(15)

$$\pi_5 = \pi_5 \cdot \pi_2^{n+1} = \frac{k_c D_{n+1}}{k_c D_{n+1}} \cdot \frac{p_{n+1}}{p_{n+1}} = \frac{k_c p_{n+1}}{k_n p_{n+1}}$$
(16)

The resulting functional relationship is:

$$\pi_1 = f(\pi_2, \pi_3, \pi_4, \pi_5)$$
(17)

Substituting:

$$\frac{R}{W} = f\left(\frac{b}{D}, \frac{s}{D}, \frac{k_{\phi}b^{n+2}}{W}, \frac{k_{c}b^{n+1}}{W}\right) \tag{18}$$

The cohesive soil value, k_c , for sand was determined to be zero $\frac{k_cb^{n+1}}{W}$ (see par. IV, A,1). Therefore, the term $\frac{k_cb^{n+1}}{W}$ may be eliminated from the functional relationship. The revised function relationship for the motion resistance of dual wheels is therefore:

$$\frac{R}{W} = f\left(\frac{b}{D}, \frac{s}{D}, \frac{k_{\phi}b^{n+2}}{W}\right) \tag{19}$$

C. Motion Resistance of Tandem Wheels

The functional relationship which was developed previously for the motion resistance of dual wheels may also be applied to tandem wheels. This statement is true because of the fact that the wheel separation term for dual wheels, s, has the same basic dimension as the wheel separation term for tandem wheels (ℓ).

Hence, the functional relationship for the motion resistance of tandem wheels may be written as:

$$\frac{R}{V} = f\left(\frac{b}{D}, \frac{L}{D}, \frac{k_b^{n+2}}{V}\right) \tag{20}$$

D. Sinkage of Dual and Tandem Wheels

The development of the sinkage functional relationships is almost identical to that of the motion resistance relationships. The major differences are the substitution of wheel sinkage, z, for motion resistance as the secondary parameter.

By a similar analysis, all $\pi\text{-terms}$ are identical, with the exception of $\pi_{\textbf{i}}$. Here

$$\pi_{l} = \frac{z}{b} \tag{21}$$

and the functional relationship for the sinkage of dual wheels becomes

$$\frac{z}{\overline{b}} = f\left(\frac{b}{\overline{b}}, \frac{s}{\overline{b}}, \frac{k_{\phi}b^{n+2}}{w}\right)$$
 (22)

Likewise, the functional relationship for the sinkage of tandem wheels is

LOTHER VIOLE AND VIOLE IN SECTION OF A SECTI

$$\frac{z}{\overline{b}} = f\left(\frac{b}{\overline{b}}, \frac{\ell}{\overline{b}}, \frac{k_{\phi}b^{n+2}}{W}\right)$$
 (23)

Since the two wheels of a tandem configuration may sink at different depths, the sinkage of the front wheels was designated \mathbf{z}_{F} ; that of rear wheel, \mathbf{z}_{R} .

The state of the s

IV. TEST FACILITY AND EQUIPMENT

A. Test Facility

1. Soil Bin

The tests were conducted in fine grain sand contained in a bin 37 feet long, 3 feet wide, and filled to a depth of 24 inches. The measured sand angle of internal friction was 31° ; its coefficient of conesion was zero; and its moisture content varied between 0.6% and 1.0%. The soil sinkage parameters for the sand, as determined by a series of Bevameter tests were: $k_{\circ} = 4.7$; $k_{\circ} = 0$; n = 1.15.

2. Tiller

The sand was tilled by means of a gyrotiller after each test to a depth of 17 to 18 inches, (see Figure 1). The sand was

FIGURE 1. GYROTILLER

NOT REPRODUCIBLE

tilled sufficiently prior to the tests to obtain a uniform air-dry condition. To assure uniformity between tests, penetration readings (standard $1/2" - 30^{\circ}$ cone penetrometer 12) and shear strength readings (Cohron-Sheargraph 13) were taken at three locations along the soil tank in the path of the wheels.

B. Equipment

1. Wheels

Five pairs of wheels were constructed for use in this study. Three of these (Pairs Ia, Ib, and Ic) were constructed with a width-to-diameter ratio of approximately 0.26 in order to form a geometrically similar set (see Figure 2). The other two (pairs II and III) were of the same diameter as pair Ib and had width-to-diameter ratios of 0.297 and 0.225. They were formed by adding or removing sheets of plywood from the wheels of that pair. The widths, diameters and width-to-diameter ratios for each pair tested are shown in Table 1.

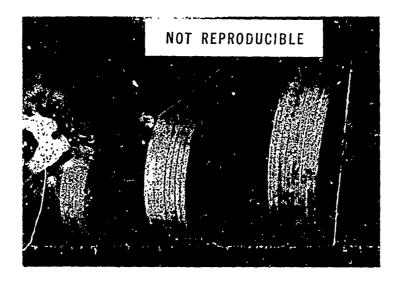


FIGURE 2. GEOMETRICALLY SIMILAR WHEELS

Table | Wheel Dimensions

Wheel Pair No.	Diameter (D) (in)	Width (b) (in)	Width/Diameter (b/D)
la	14.75	3.88	0.263
I _b	20.875	5.41	0.259
¹ c	27.0	6.98	0.259
11	20.875	4.70	0.225
	20.875	6.20	0.297

2. Test Apparatus

a. Sub-frame

(1) Dual Configuration

In dual configuration the wheels were mounted on a one and one-quarter-inch steel axle. The ax'e was supported by a bearing holder which was bolted to the sub-frame. The wheels were prevented from slipping on the axle by two set screws which were mounted on the flange plate. Figure 3 shows the apparatus as utilized in the dual configuration.

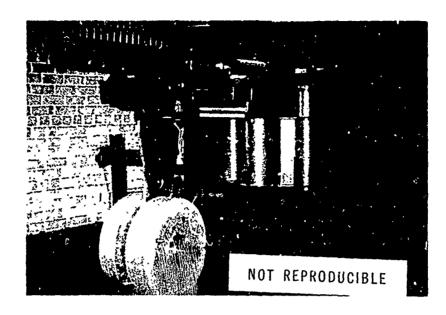


FIGURE 3. TEST APPARATUS IN DUAL CONFIGURATION

(2) Tandem Configuration

In the tandem configuration the wheels were mounted on stub axles which were in turn mounted on a long steel mounting plate. The center of the plate was bolted to another stub axle which was bolted to the sub-frame. Figure 4 shows the apparatus as utilized in the tandem configuration.

(3) Single Wheel Configuration

In the single wheel configuration the wheel was mounted on a stub axle which was bolted to the sub-frame. Figure 5 shows the apparatus as utilized in the single wheel configuration.

b. Main-frame

The sub-frame was attached to a wheel dynamometer main-frame which included a parallelogram type force transducer (see Section C, Instrumentation). The main frame was fastened to two linear bearings permitting a near-frictionless vertical movement of

NOT REPRODUCIBLE

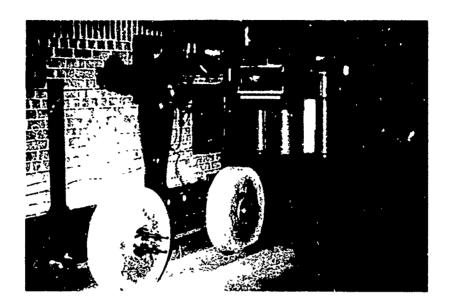


FIGURE 4. TEST APPARATUS IN TANDEM CONFIGURATION

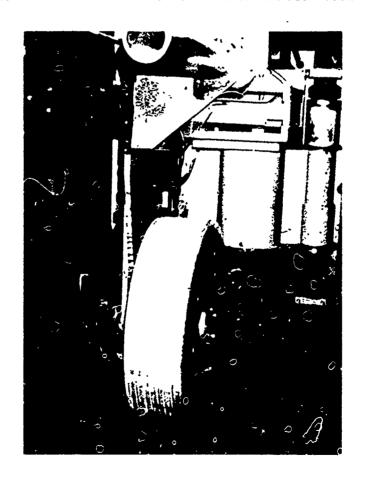
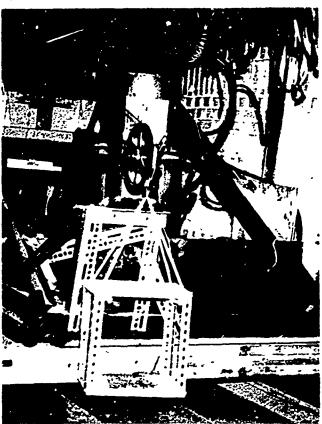



FIGURE 5. TEST APPARATUS IN SINGLE WHEEL CONFIGURATION

the whole assembly. The main-frame may be seen in Figures 3, 4 and 5.

c. Counterbalance

A counterbalance (Figure 6) was constructed to permit operation of the wheels at loads below the total weight of the mainframe, sub-frame, wheels and other auxilliary equipment.

The state of the s

FIGURE 6. COUNTERBALANCE

C. Instrumentation

I. Velocity

a. Carriage Velocity

The velocity of the carriage was measured utilizing a series of event markers spaced at one and one-half foot intervals along the test bin. As the carriage was driven down the test bin a

4

.

microswitch was closed by each of the event markers. When the microswitch was closed, it briefly shorted out the channel of the recorder on which the sinkage of the wheels was recorded causing a large deflection of the pen. Calculation of the carriage velocity is shown in Appendix 1. Figure 7 shows the microswitch and several of the event markers.

FIGURE 7. MICROSWITCH AND EVENT MARKERS USED TO MEASURE CARRIAGE VELOCITY

b. Wheel Velocity

The velocity of the wheels was measured utilizing a microswitch triggered by the four bolts with which the wheel was held to the flange plate. In the tandem configuration two microswitches were utilized so that the velocity of each wheel could be measured independently. A one and one-half volt battery was wired into the circuit to give a voltage pulse when the microswitch was closed. The

signal from this microswitch was fed into a DC amplifier in the recorder. Calculation of the wheel velocity is shown in Appendix !. Figure 8 shows the microswitch and the mounting apparatus as utilized in the dual configuration.

FIGURE 8. MICROSWITCH USED TO MEASURE WHEEL VELOCITY
2. Wheel Sinkage Measurement

a. Dual Wheels and Single Wheel

The sinkage of the dual and single wheels was measured by means of a chain-driven multiple turn potentiometer (Figure 9). The potentiometer was mounted on the rigid part of the carriage while the chain was fastened to the main-frame of the test apparatus. As the wheels sank into the sand, the potentiometer was turned as the

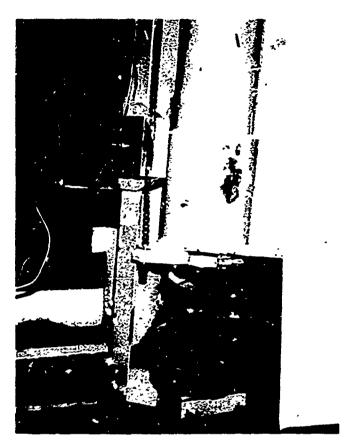


FIGURE 9. SINKAGE MEASUREMENT DEVICE

chain moved downward.

b. Tandem Wheels

measured the vertical motion of the center of the mounting plate. A second multiple turn potentiometer was utilized to determine the difference in sinkage between the front and rear wheels. This second potentiometer was operated by a string which was attached to the end of the mounting plate. By determining the distance that the plate moved from a level position, it was possible to determine the front and rear wheel sinkage. Sample calculations of wheel sinkage are shown in Appendix II. Figure 10 shows this second potentiometer and

the string by which it was turned.

FIGURE 10. TANDEM WHEE SINKAGE MEASUREMENT DEVICE 3. Motion Resistance Measurement

it was determined that frictional losses in the system were negligible. Therefore, the force measured at the dynamometer was considered to be the motion resistance. It was measured by means of a Linear Differential Transformer (LVDT) type transducer. The transducer was mounted in an aluminum frame as shown in Figure 11.

4. Recording Data

A four-channel Sanborn recorder was utilized to record the data taken for each test. Only three channels were utilized to record motion resistance, wheel velocity, sinkage and carriage velocity

- -

• •

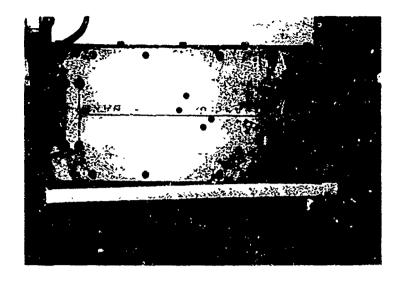


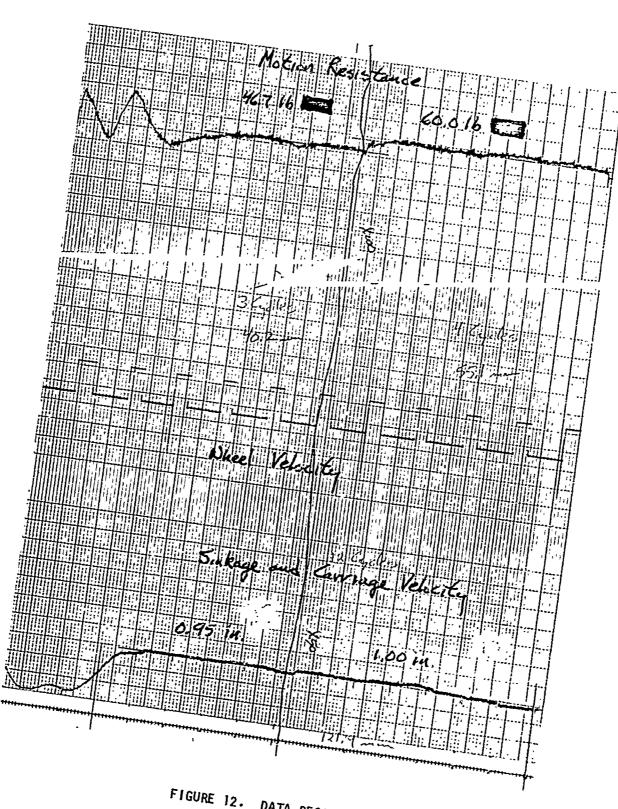
FIGURE 11. SOIL BIN DYNAMOMETER

since carriage velocity was recorded by means of an interruption in the sinkage trace. Figure 12 shows a copy of the recorded data for one test run.

5. Calibration

a. General

All potentiometers were calibrated prior to testing each different set of wheels. If tests for a set of wheels extended to a second day, calibration checks were made prior to the second day's tests.


b. Sinkage

(1) Dual Wheels and Single Wheel

The chain-driven multiple turn potentiometer was calibrated by establishing the "zero" sinkage level (that level at which the bottom of the wheel touched the top surface of the soil) and then physically lowering the wheel into a hole in the sand. The

į

o nemalabelangung mengengan pengengan pengengan pengengan panggan pengengan pengengan pengengan pengengan peng

French

FIGURE 12. DATA RECORD

or and the contraction of the co

recording was marked each time the wheel was lowered an inch (as measured by a ruler) and a calibration curve was generated in this manner.

(2) Tandem Wheels

In addition to the steps in the preceding paragraph, it was required that the second multiple turn potentiometer be calibrated. This potentiometer was calibrated by first leveling the mounting plate (see Figure 4), thus establishing a zero point. The recording was marked each time the plate was moved up or down one-half inch.

c. Motion Resistance

Since it was determined that loadings on the sub-frame gave the same readings as loadings at the bottom of the wheel, the motion resistance dynamometer was calibrated by loading known weights on a weight pan which was attached to the sub-frame over a pulley by a rope.

V. TEST PROCEDURES

Prior to each day of testing a calibration check was made of all instrumentation. If this was a new configuration, it was calibrated completely. The soil was tilled prior to each test, and penetration, and shear strength readings were taken at the beginning of each day. The wheels were loaded by means of dead weights placed on the load pan or on the counterbalance system. All tests were run at a constant carriage speed of approximately 0.167 feet/second.

For dual wheel tests, the wheels were placed at a given spacing. Since both the sinkage and the motion resistance stabilized quite rapidly, it was found that we could add weights during the test so that two loads would be tested during each run. Three tests were made for each condition to be studied. Four loads and three spacings were used for each wheel size tested.

The tandem wheel tests were conducted in generally the same manner as the dual wheel tests. However, an additional preliminary step was necessary to allow for measurement of individual sinkages of the front and rear wheels. This additional step was to insure that, prior to each test, the pen measuring output of the string-driven multiple turn potentiometer was set to the midpoint when the mounting plate was level. The plate was leveled utilizing a carpenter's level.

The test procedures for the single wheel tests were somewhat different from those for the dual and tandem wheels. Two loadings could be tested in each test run but the soil was not processed after each run. The wheel was blocked above the sand level as the carriage

was returned to the starting position. A second pass was then made in the rut formed by the wheel in the first pass. The soil was tilled after every other run. Single wheel tests were conducted only with pairs Ia, Ib and Ic and were conducted with loadings one-half of that for the dual and tandem configurations.

Tables II, III and IV show a summary of the test configurations of all tests which were conducted.

THE PROPERTY OF THE PROPERTY O

Table ||
Summary of Dual Wheel Tests

Test No.	Wheel Pair	Load (W) (1b)	Wheel Separation (s) (in.)
1-3	l _a	150	1.5
4-6	la	150	2.5
7-9	la	150	3.8
10-12	l _a	220	1.5
13-15	l _a	220	2.5
16-18	l _a	220	3.8
19-21	la	300	1.5
22-24	la	300	2.5
25 - 27	la	300	3.8
28-30	la	350	1.5
31-33	la	350	2.5
34-36	la	350	3.8
37-39	b	150	2.625
40-42	b	150	3.56
43-45	b	150	5.41
46-48	b	220	2.625
49-51	b	220	3.56
52-54	b	220	5.41
55-57 58-60 61-63 64-66	b b b	300 300 300	2.625 3.56 5.41
67-69 70-72	b b b	350 350 350	2.625 3.56 5.41
73-75	c	150	2.75
76-78	e	150	4.56
79-81	c	150	7.00
82-84	c	220	2.75
85-87	c	220	4.56
88-90	c	220	7.00
91-93	c	300	2.75
94-96	c	300	4.56
97-99	c	300	7.00
100-102	c	350	2.75
103-105	c	350	4.56
106-108	c	350	7.00

and the contraction of the contr

-

I

A. C. C.

1

1

Table II (continued)

Test No	Wheel Pair	Load (W) (1b)	Wheel Separation (s)
109-111	11	150	2.625
112-114	11	150	3.56
115-117	11	150	5.41
118-120	{	220	2.625
121-123	{	220	3.56
124-126	{ }	220	5.41
127-129	11	300	2.625
130-132	11	300	3.56
133-135	11	300	5.41
136-138	11	350	2.625
139-141	11	350	3.56
142-144	11	350	5.41
145-147	111	150	2.625
148-150	111	150	3.56
151-153	111	150	5.41
154-156	111	220	2.625
157-159	111	220	3.56
160-162	111	220	5.41
163-165	111	300	2.625
166-168	111	300	3.56
169-171	111	300	5.41
172-174		350	2.625
175-177		350	3.56
178-180		350	5.41

ł.

I

Table !!!
Summary of Tandem Wheel Tests

Test No	Wheel Pair	Load (W)	Wheel Separation (£)
181-183 184-186 187-189 190-192	l _a l _a l _a	(16) 150 150 150 220	(in.) 16.125 21.80 29.50
193-195 196-198	la la	220 220	16.125 21.80 29.50
199-201	l _a	300	16.125
202-204	l _a	300	21.80
205-207	l _a	300	29.50
208-210	la	350	16.125
211-213	la	350	21.80
214-216	la	350	29.50
217-219	1 _b	150	21.80
220-222	1 _b	150	29.50
223-225	1 _b	150	41.75
226-228 229-231 232-234	1 _b 1 _b	220 220 220	21.80 29.50 41.75
235-237	b	300	21.80
238-240	b	300	29.50
241-243	b	300	41.75
244-246 247-249 250 - 252	b b	350 350 350	21.80 29.50 41.75
253-255	c	150	29.50
256-258	c	150	41.75
259-261	c	150	54.0
262-264	c	220	29.50
265-267	c	220	41.75
268-270	c	220	54.0
271-273	c	300	29.50
274-276	c	300	41.75
277-279	c	300	54.0
280-282	l _c	350	29.50
283-285	lc	350	41.75
286-288	l _c	350	54.0

Table : II (continued)

Test No.	Wheel Pair	Load (\) (1b)	Wheel Separation (£) (in.)
289-291	H	150	•
292-294	11	150	21.80
295-297	11	150	29.50
298-300	11	-	41.75
301-303		220	21.80
304-306	11	220	29.50
	H	220	41.75
307-309	11	300	• •
310-312	11	300	21.80
313-315	11	-	29.50
316-318		300	41.75
	11	350	21.80
319-321	11	350	
322-324	11	350	29.50
		7 ,70	41.75
325-327	111	150	
328-330	111	-	21.80
331-333	111	150	29.50
_	111	150	41.75
334-336	111	220	21.80
337-339	111	220	
340-342	111	220	29.50
343-345			41.75
346-348	111	300	21.80
349-351	111	300	29.50
	111	300	41.75
352-354	111	350	· -
355 - 357	111	-	21.80
358-360	H	350 350	29.50
	•••	350	41.75

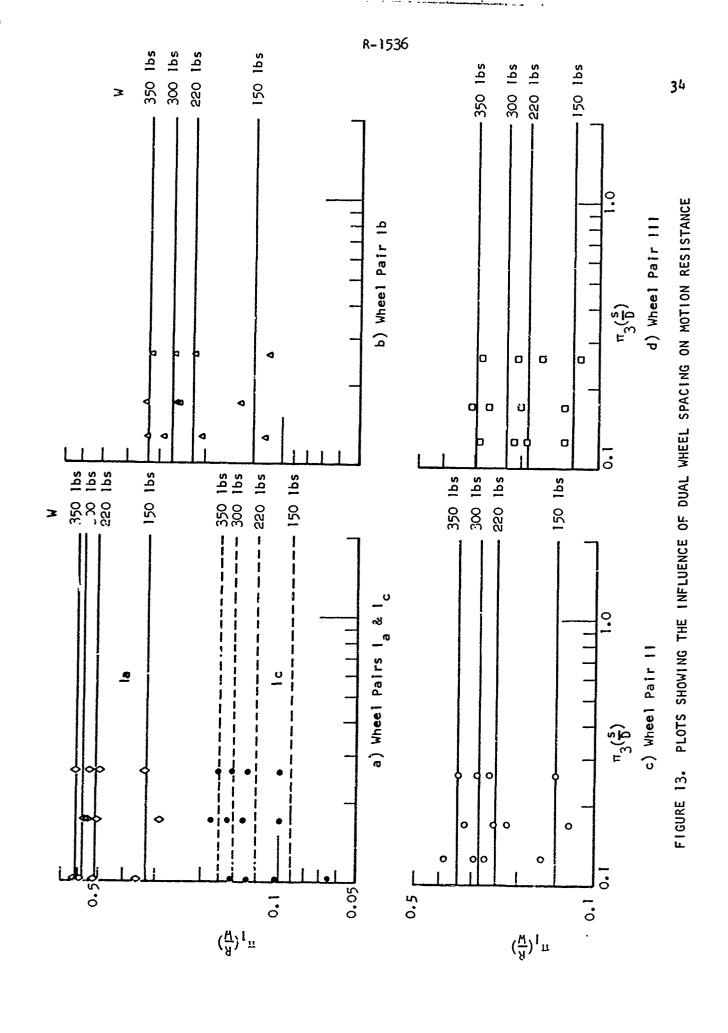
TABLE IV
Summary of Single Wheel Tests

	, ,		
ïest No.	Wheel Pair (one wheel only)	Load (W)	Pass No.
361-362	la		1
363-364	`a ! a	75 75	1
365-366			
367-368	la J _a	110 110	1
369-370			2
371-372	í a	150	1
373-374	l _a	150	2
375 - 37€	l _a	175	1
	a	17 5	2
377 - 378	l _b	7 5	1
379-380	b	7 5	2
381-382	I _b	110	i
383-384	1 _b	110	2
385-386	1 _b	150	i
387-388	1 _b	150	2
389 -3 90	1 _b	175	ī
391-392	I,	175	2
393-394	I _c	7 5	
395-396	l _c	7 5	1
397-398		110	
399-400	l _c	110	1
401402	'c		2
403-404	l c	150	1
405-406	l'c	ī 50	5
407-408	l _c	175	1
101-100	l _c	175	2

VI. RESULTS

The results were tabulated and will be found in Appendix IV. The linear average of the three test values were used in computing the $\,\pi\,$ terms presented.

VII. ANALYSIS OF RESULTS


A. General

Each of the general functional relationships previously developed contained an unknown equation constant and unknown exponents for each π term. The results of the Losts were evaluated to determine these unknown quantities for each relationship. Only the dual and tandem wheel motion resistance relationships will be discussed in detail. The dual and tandem wheel sinkage relationships will only be outlined as they were determined in much the same manner.

B. Motion Resistance of Dual Wheels

1. π_1 (R/W) and π_3 (s/D) Relationship

The tests were designed to be conducted with five sets of wheels, three of which had an aspect ratio (b/D) of G.26. The aspect ratios of the other sets of wheels were 0.225 and 0.297 (see Table I). A plot was made of log π_l vs. log π_3 for various aspect ratios and weights (Figure I3). A close examination of the plots in Figure 13 reveal that, in the case of wheel pairs Ic, III and the lighter loads of wheel pair Ib, a line connecting the data points would be concave downward. On the other hand, the data from pair II, and the lightest load of pair Ia are concave upwards. Other configurations appear to lie in an almost horizontal straight line. Further examination of the plots of the other configurations tested (Figures 19, 23, 27 and 31) reveal a horizontal straight line will yield the best overall fit to the data. Thus, though there may be a somewhat more complex relationship, for the rest of this study it was assumed

AND THE STATES OF THE PARTY OF

Thus the $\frac{R}{W}$ ratio did not vary with wheel spacing, or it varied so little, within the range tested, that its effect was within the data scatter. For this reason the exponent of the π_3 term could be set to zero and removed from the functional relationship of Equation (19). The plots in Figure 13 do not overlie because, for the various weights tested, the π_4 -terms have different values. To collapse these curves we must therefore examine the relationships between π_1 and π_4 .

2.
$$\pi_{1}$$
 (R/W) and π_{L} ($k_{\phi}b^{n+2}/W)$

ではい

ž

產

学院

I

I

In order to generate a relationship between π_1 and π_4 , we took the intersection of the horizontal fitting line of Figure 13 with the π_1 axis to be the representative π_1 value for the wheel pair and load under consideration. This representative value was then called $\tilde{\pi}_1$. A plot was then made of $\log \tilde{\pi}_1$ vs. $\log \pi_4$ for each set of wheels, (Table V and Figure 14). In Figure 14, since all π -terms for wheel pairs 1a, 1b and 1c are equal, the three lines should overlap. This they clearly do not do, thus indicating model distortion either to the effects of dissimilar slip or to other reasons.

From the measured slope of these lines and each line's intercept at log l, the following relationships were generated:

Wheel Pair Ia;
$$\bar{\pi}_1 = 0.66 \, m_4^{-0.9}$$
 (24)

Wheel Pair Ib;
$$\bar{\pi}_1 = 0.81 \, \pi_4^{-0.9}$$
 (25)

Wheel Pair Ic;
$$\bar{\pi}_1 = 0.91 \, \eta_4^{-0.9}$$
 (26)

Wheel Pair II;
$$\bar{\pi}_1 = 0.54 \, \pi_4^{-0.9}$$
 (27)

Wheel Pair III;
$$\bar{\pi}_1 = 1.01 \, m_4^{-0.9}$$
 (28)

Table V

 $\bar{\pi}_1$ and π_4 Values for Motion Resistance of Dual Wheels

	_	π ₁ 4	9.800	6.705	4.919	4.198
		۱۴	0.126	0.187 6.705	0.227	0.297 4.198
	-	$^{17}\mu$	4, 10	2.803	2.057	1.755
		<u></u>	0.142	0.242	0.280	0.340
ir No.	(τ _μ	14.248	9.741	7.147	6.100
Wheel Pair No.	-	ı⊭	0.098	0.135	0.150	0.170
		π ₄ μ	0.129 6.348	45.4	3.184	0.331 2.718
		- ا =	0.129	0.223 4.34	0.268	0.331
		۵ ۳	2,241	1.532	1.124	0.959
		۰ <u>۲</u>	0.325	0.510	0.573	0.605
		Load (15)	150	220	300	350

TO A COLUMN TO THE STATE OF THE

I

State 1

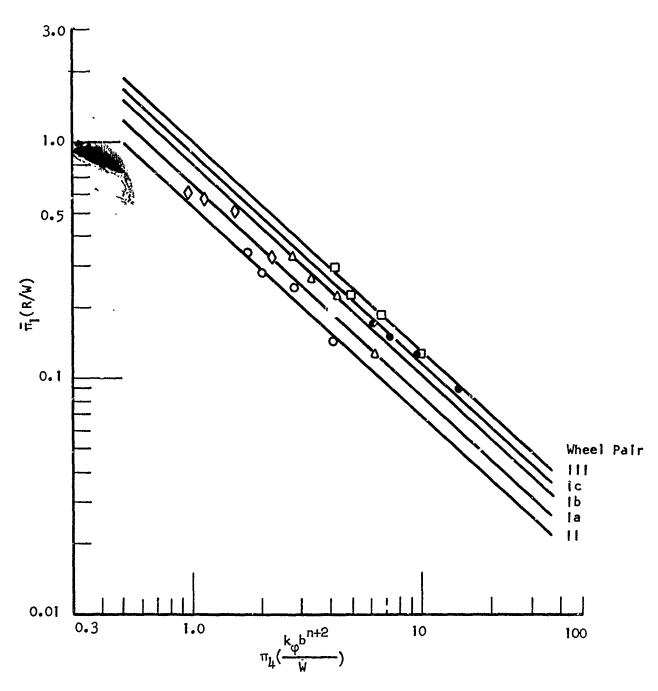


FIGURE 14. PLOTS SHOWING THE RELATIONSHIP BETWEEN WHEEL WIDTH AND MOTION RESISTANCE OF DUAL WHEEL

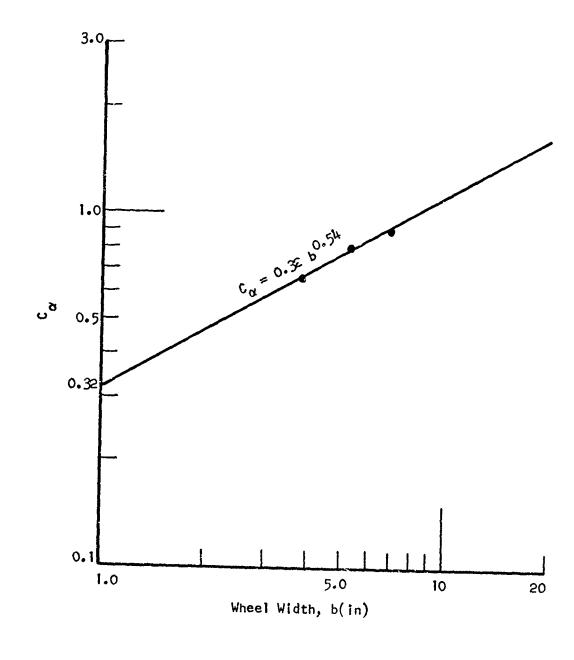
To continue the solution of this problem the relationships for the three wheel pairs with the same aspect ratio must be collapsed. This was accomplished by plotting the coefficients of Equations (24), (25) and (26) (called c_{α}) vs. the wheel width (see Figure 15). From Figure 15, the following relationship was generated:

$$c_{n} = 0.32 b^{0.54}$$
 (29)

When equations (24) to (26) are divided by this relationship they collapse to the relationship:

$$\pi_{1}^{1} = \frac{\pi_{1}}{c_{\alpha}} = \frac{\text{(Intercept)} \, \eta_{1}^{-0.9}}{0.32 \, b^{0.54}} \approx 1 \, \eta_{1}^{-0.9} \tag{30}$$

Note that the new relationship was designated π_1^i . Now, since Equations (24) to (26) were 6° -ided by 0.32 6° 0.54, Equations (27) and (28) must also be divided likewise:


$$\pi_{1}^{i} = \frac{\pi_{1}}{c_{\alpha}} = \frac{0.54 \, \pi_{14}^{-0.9}}{0.32 \, b^{0.7}} = \frac{0.54 \pi_{14}^{-0.9}}{0.32 (4.7)^{0.54}} = 0.73 \, \pi_{14}^{-0.9}$$
(31)

$$\pi_{1}^{\prime} = \frac{\pi_{1}}{c_{\alpha}} = \frac{1.01 \, \pi_{1}^{-0.9}}{0.32 \, b^{0.54}} = \frac{1.01 \, \pi_{1}^{-0.9}}{0.32(6.2)^{0.54}} = 1.18 \, \pi_{1}^{-0.9}$$
(32)

Equations (30) to (32) are plotted in Figure 16.

3.
$$\pi_1^{\prime}$$
 (R/W) and π_2^{\prime} (b/D) Relationship

To complete the functional relationship, a plot was next made of $\log \pi_1$ vs. $\log \pi_2$ at a constant value of π_4 equal to one (Figure 17). From Figure 17 the following relationship was determined:

British British British

FIGURE 15. C_{α} vs b for MOTION RESISTANCE OF DUAL WHEELS

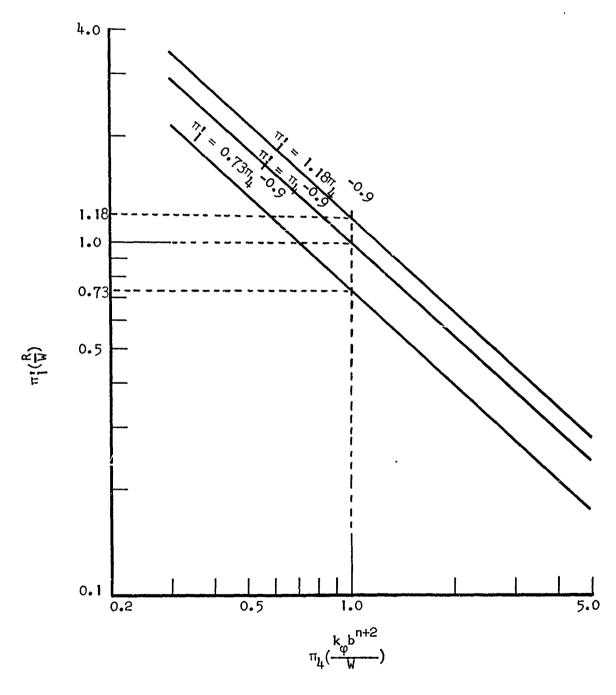


FIGURE 16. π_{1}^{*} vs π_{L}^{*} AFTER COLLAPSING LINES FOR SIMILAR WHEELS



FIGURE 17. π_1^* vs π_2 for MOTION RESISTANCE OF DUAL WHEELS

$$\pi_{1} = 9.75 \, \pi_{2}$$
(33)

4. Complete Functional Relationship

Since two relationships were known for π_l^l , they could be combined by the technique presented by Murphy. (See Appendix III).

$$\pi_{1}^{i} = F(\pi_{2}, \pi_{4}) = \frac{F(\bar{\pi}_{2}, \pi_{4})F(\pi_{2}, \bar{\pi}_{4})}{F(\bar{\pi}_{2}, \bar{\pi}_{4})} = \frac{(1 \pi_{4}^{-0.9})(9.75 \pi_{2}^{-1.7})}{1}$$

$$\pi_{1}^{i} = 9.75 \pi_{2}^{1.7} \pi_{4}^{-0.9}$$
(34)

but, from Equation (30)

$$\bar{\pi}_1 = c_{\alpha} \pi_1^{i} \tag{30}$$

Therefore:

$$\bar{\pi}_{1} = 0.32 \ b^{0.54} (9.75 \ \pi_{2}^{1.7} \ \pi_{4}^{-0.9})$$

$$\bar{\pi}_{1} = 3.12 \ b^{0.54} \pi_{2}^{1.7} \ \pi_{4}^{-0.9}$$
(35)

5. Modification of Functional Relationship

It was noted that the constant and exponents of Equation (35) were decimal fractions. These numbers are probably subject to experimental error. Therefore, for simplification, without probable loss of accuracy, the equation was modified as seen below:

$$\bar{\eta}_1 = 3 \frac{\sqrt{5} \, \bar{\eta}_2^{1.5}}{\bar{\eta}_4}$$
 (36)

Expressed in terms of the problem variables, Equation (36) becomes: $\overset{*}{}$

$$R = 3 \frac{v^2}{b^n k_m^{0.1.5}}$$
 (37)

To determine how accurately Equation (36) was, the corresponding values of b, π_2 and π_4 were substituted into it and plotted in Figure 18. It will be noted that two points for wheel pair la were very poorly predicted. These points were for the 300 and 350 pound loads and each had a very high skid rate.

6. Comparison with Bekker's Equation

Bekker derived an equation 11 to predict towing resistance of any rigid wheel in homogeneous soils of any type. His equation, with n=1.15 and k=4.7 is

$$R = 0.55 \frac{w^{1.3}}{b^{.3} p^{.65}}$$
 (38)

For similar data, Equation (37) becomes

$$R = 0.64 \frac{\sqrt{2}}{b^{1.15} p^{1.5}}$$
 (39)

It will be noted that the Equations (37) and (38) are of the same form, however, the constants and exponents differ greatly. This difference is probably due to the fact that Bekker's Equation was derived from theoretical considerations only, and was not well validated with experiments.

It should be noted that, in our experiments, \mathbf{k}_{ϕ} was not varied; hence there is some uncertainty regarding its exponent in the above equation

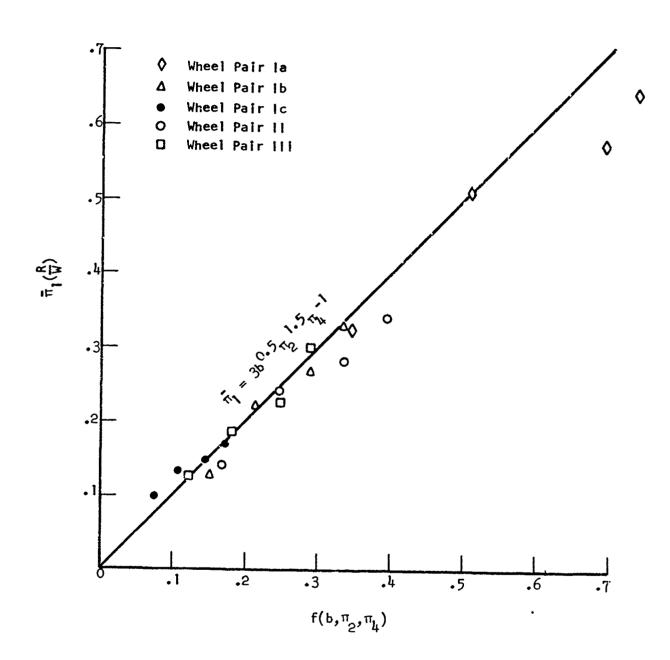


FIGURE 18. COMPARISON OF EQUATION (36)
WITH MEASURED DATA

1.
$$\pi_1$$
 (R/W) and π_3 (L/D)

As described above, log plots were made of π_1 vs. π_2 for various aspect ratios and weights (see Figure 19). It was determined, as in the previous case, that the R/W ratio did not vary with spacing or varied so little that it was negligible. For this reason the exponent of the π_2 term for tandem wheels was also set to zero and removed from the functional relationship of Equation (20). Similarly, a representative value of π_1 (designated π_1) was read from the plot at the intersection of the horizontal fitting line with the $\boldsymbol{\pi}_{l}$ axis.

2.
$$\pi_1$$
 (R/W) and π_4 (k_0b^{n+2}/W) Relationship

A plot was then made of $\log \pi_1$ vs. $\log \pi_\mu$ for each set of wheels. (Table VI and Figure 20). Once again the lines connecting all of the points for each wheel were drawn parallel to one another. From the measured slope of the lines and each line's intercept at log I, the following relationships were generated:

Wheel Pair I_a
$$\bar{\pi}_1 = 0.42 \, \pi_4^{-0.39}$$
 (40)

When Pair II
$$\bar{\pi}_1 = 0.388 \, \pi_4^{-0.39}$$
 (41)
Wheel Pair III $\bar{\pi}_1 = 0.469 \, \pi_4^{-0.39}$ (42)

Wheel Pair III
$$\pi_1 = 0.469 \, \pi_L^{-0.39}$$
 (42)

It will be noted in Figure 20 that the data for wheel pair (c falls far away from that of la and 15. These points were determined to erroneous upon comparing them with single wheel resistance readings

···

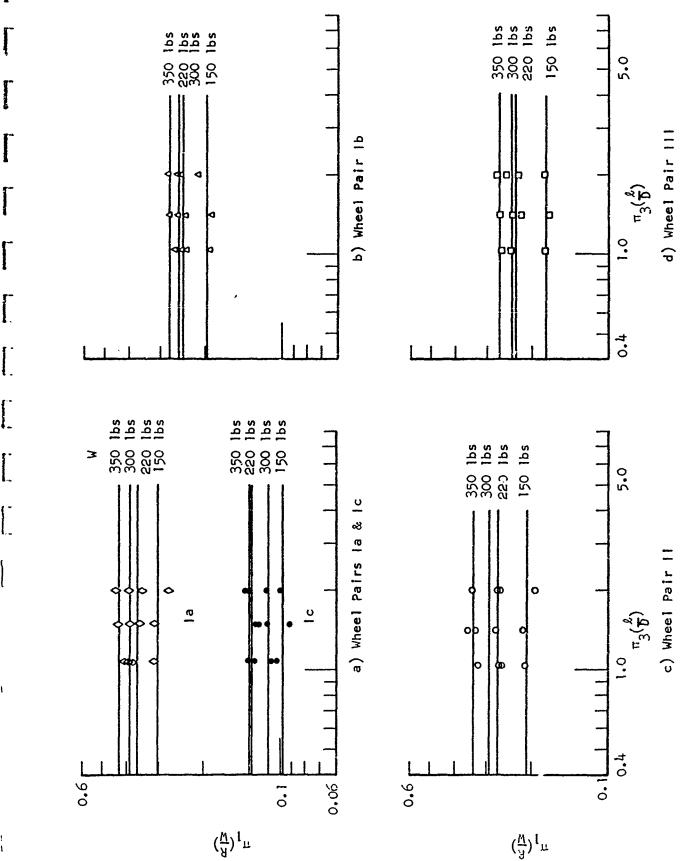


FIGURE 19. PLOTS SHOWING THE INFLUENCE OF TANDEM WHEEL SPACING ON MOTION RESISTANCE

12年2五天人人,11年21日,11年22日,1

On one of the sold of the properties of the prop

Table VI

A CONTRACT NAME OF THE PROPERTY OF THE PROPERT

 $ec{\pi}_1$ and $\pi_{f 4}$ Values for Motion Resistance of Tandem Wheels

					Wheel Pair No.	ir No.			-	
	ı E	- а т ₄	اء ا	اه ۳4	- 'E	†# ±	· E	1. 1.	= '-	_ ‡
150	0.302	2.241	0.197	6.348	0.098	14.248	0.208	4.10	0.176	9.806
220	0.364	1.532	0.254	4.34	0.128	9.741	0.270	0.270 2.803	0.231	0.231 6.706
300	0.390	1.124	0.245	3.184	0.111	7.147	0.293	2.057	0.240	4.919
350	0.430	0.959	0.276	2.718	0.132	6.10	0.338	0.338 1.755	0.268	0.268 4.198

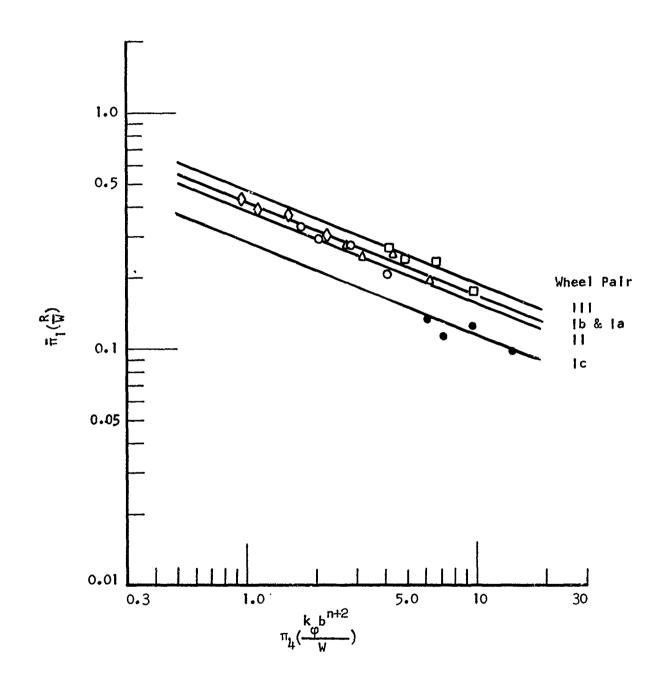


FIGURE 20. PLOTS SHOWING THE RELATIONSHIP BETWEEN WHEEL WIDTH AND MOTION RESISTANCE OF TANDEM WHEELS

for the three similar wheels. The tandem resistance readings for the large wheel were 25% to 40% lower than those for the other wheels.

These points were therefore neglected in the calculations which follow.

Since the points for the two remaining similar wheels fell in a single line, there appeared to be no distortion of motion resistance due to scale effects.

$3 \cdot \overline{\Pi}_1$ (R/W) and Π_2 (b/D) Relationship

To complete the functional relationship, a plot was next made of log π_1 vs. log π_2 at a constant value of π_4 equal to one. From Figure 21

$$\tilde{\pi}_1 = 1.02\pi_2^{0.66}$$
(43)

4. Complete Function Relationship

The complete functional relationship then becomes:

$$\bar{\pi}_{1} = F(\pi_{2}, \pi_{4}) = \frac{F(\bar{\pi}_{2}, \pi_{4})F(\pi_{2}, \bar{\pi}_{4})}{F(\bar{\pi}_{2}, \bar{\pi}_{4})} = \frac{(0.42\pi_{4}^{-0.39})(1.02\pi_{2}^{-0.66})}{0.42}$$

$$\bar{\pi}_{1} = 1.02\pi_{2}^{-0.66} \pi_{4}^{-0.39} \tag{44}$$

A simplified version of Equation (44) would be

$$\bar{\pi}_1 = \pi_2^{2/3} \pi_4^{-1/3} \tag{45}$$

Expressed in terms of the problem variables, Equation (45) becomes:

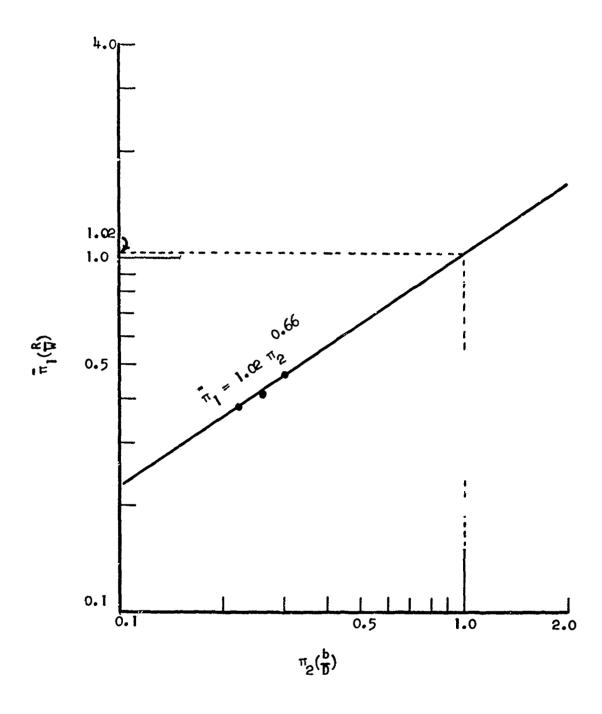


FIGURE 21. π_1 vs π_2 FOR MOTION RESISTANCE OF TANDEM WHEELS

$$F = \frac{\sqrt{\frac{1}{3}}}{\sqrt{\frac{1}{3}}} \frac{\sqrt{\frac{1}{3}}}{\sqrt{\frac{1}{3}}} \sqrt{\frac{1}{3}}$$
 (46)

Figure 22 shows a plot of the measured values of $\tilde{\pi}_1$ compared with calculated value utilizing Equation (45).

5. Comparison with Letoshnev's Equation

Bekker presented an equation il introduced by Letoshnev for motion resistance of tandem, towed wheels of the same width. The equation based on a value of n equal to one-half is:

$$R \approx 1.6 \frac{w^{3/2}}{b^{.5} k^{1/2} p^{3/4}}$$
 (47)

Equation (46) was expressed in similar terms and n = 1.15 becomes:

$$R = \frac{v^{4/3}}{b^{0.38} k_{c}^{1/3} p^{2/3}}$$
 (48)

D. Sinkage of Dual Wheels

An analysis of $\pi_1(\frac{z}{\overline{b}})$ vs. $\pi_3(\frac{s}{\overline{b}})$ shown in Figure 23 also indicates that the exponent of π_3 is zero. Then a comparison of $\bar{\pi}_1$ vs. π_4 , shown in Table VII and Figure 24 yields the following relationships:

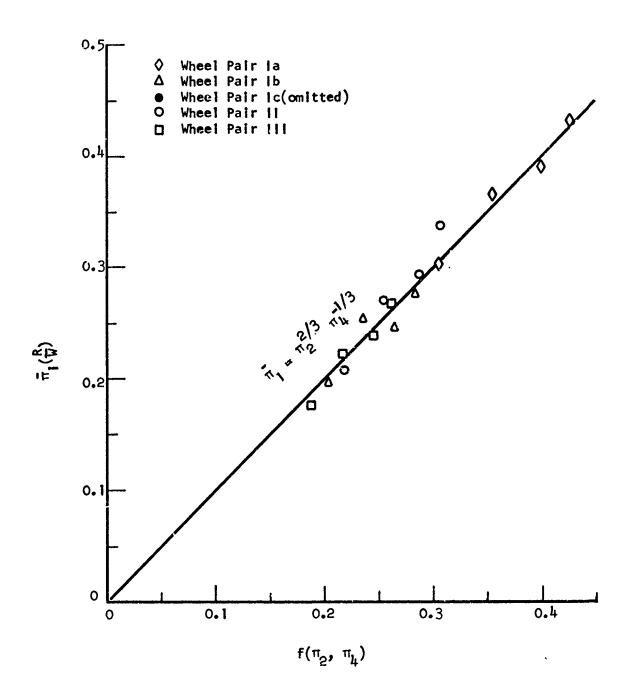


FIGURE 22. COMPARISON OF EQUATION (45)
WITH MEASURED DATA

THE RESIDENCE OF THE PARTY OF T

FIGURE 23. PLOTS SHOWING THE INFLUENCE OF DUAL WHEEL SPACING ON SINKAGE

Table VII $\pi_1 \text{ and } \pi_{t_1} \text{ Values for Sinkage of Dual Wheels}$

Ξ	п, п,	0.025 9.806	0.030 6.706	0.055 4.919	0.055 4.198
=	‡ †	0.034 4.100	0.050 2.303	2.057	0.080 1.755
	1 <u>=</u>	0.034	0.050	790.0	0.080
Wheel Pair No.	5 4	14.248	9.741	7.147	6.100
A Neo	ا =	0.018	0.020	0.030	0.032
	م 4	0.024 6.348	0.036 4.340	0.055 3.184	2.718
	יב	0.024	0.036	0.055	990.0
a	4 μ	2.24:1	1.532	1.124	0.959
 `	٠ <u>ـــــ</u>	0.092	0.155	0.222	0.250
	Load (1b)	150	220	300	350

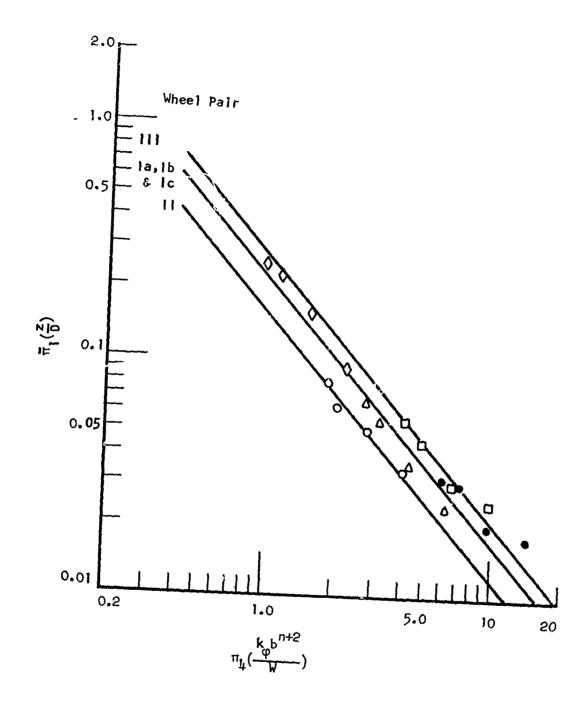


FIGURE 24. PLOTS SHOWING THE RELATIONSHIP OF SINKAGE TO WHEEL WIDTH FOR DUAL WHEELS

A NOTAL

Wheel Pair II ;
$$\bar{\pi}_1 = 0.155 \, \pi_L^{-1.11}$$
 (50)

Wheel Pair III ;
$$\bar{\pi}_1 = 0.155 \, \pi_4^{-1.11}$$
 (50)
Wheel Pair III ; $\bar{\pi}_1 = 0.269 \, \pi_4^{-1.11}$ (51)

Figure 25 then develops the relationship between $\overline{\pi}_1$ and

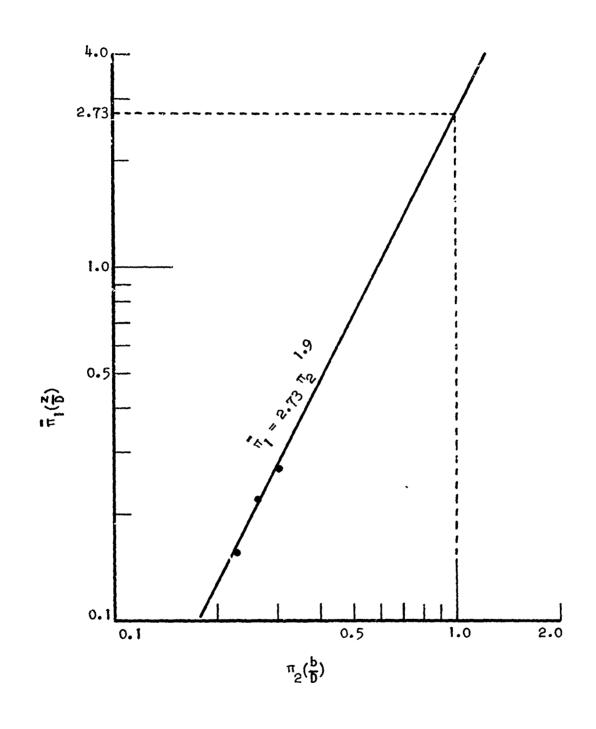
$$\bar{\pi}_1 = 2.73 \, \pi_2^{1.9}$$
 (52)

Hence, the final relationship becomes

$$\vec{\pi}_1 = F(\pi_2, \pi_4) = \frac{F(\vec{\pi}_2, \pi_4) F(\pi_2, \vec{\pi}_4)}{F(\vec{\pi}_2, \vec{\pi}_4)} = \frac{(0.218\pi_4^{-1.11}) (2.73\pi_2^{-1.9})}{0.215}$$

$$\bar{\pi} = 2.77\pi_2^{1.9} \pi_4^{-1.11}$$
 (53)

which can be simplified to


$$\bar{\pi}_1 = 3\pi_2^2 \ \pi_4^{-1} \tag{54}$$

or, in the problem variables, to:

$$z = \frac{3W}{b^{n} k_{\varphi} D} \tag{55}$$

Figure 26 shows the accuracy of Equation (54). It should be noted that two points for wheel pair I_a were very poorly predicted. These points were for the 300 and 350 pound loads which had a very high skid rate.

Bekker's prediction for rigid wheel sinkage, for $k_{cc} = 4.7$ and n = 1.15 is

S. Sanda

Barrier

4

-

Harman

FIGURE 25. π_1 vs π_2 FOR DUAL WHEEL SINKAGE

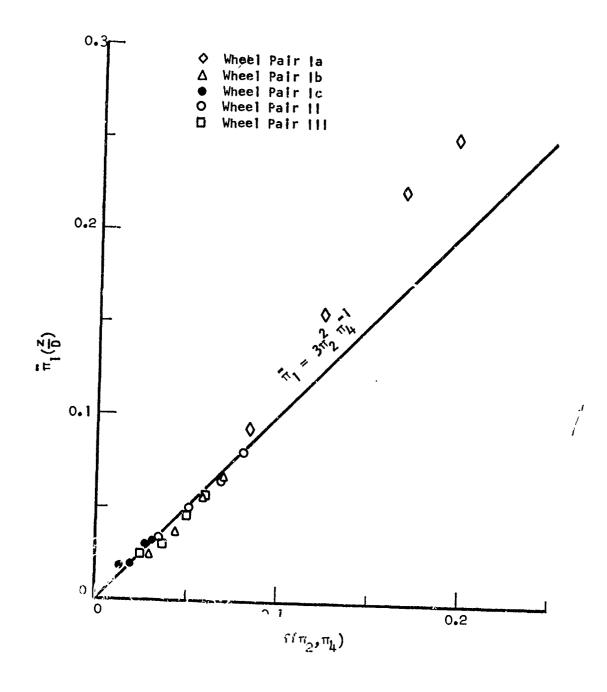


FIGURE 26. COMPANISON OF EQUATION (54) WITH REASURED DATA

$$z = \frac{0.53W^{\cdot 6}}{b^{\cdot 6} p^{\cdot 3}}$$
 (56)

but cautions that, for dry sandy soils it would not be accurate at high slip rates. For similar values, Equation (55) becomes

$$z = \frac{0.64 \text{ W}}{\text{b}^{1.15}\text{p}} \tag{57}$$

E. Sinkage of Tandem Wheels

Since the front and rear wheels of a tandem combination may sink to different depths, the analysis of the front and rear wheels were conducted separately.

For the front wheels, a log plot of $\pi_1(\frac{z}{D})$ vs. $\pi_3(\frac{L}{D})$ again demonstrated (Figure 27) that π_1 was independent of π_3 and that the exponent of π_3 should be zero. The data of π_1 vs. π_4 (Table VIII and Figure 28) show the following relationships:

Wheel Pair I_a

Wheel Pair I_b ;
$$\bar{\pi}_1 = 0.3 \, \pi_4^{-0.772}$$
 (58)

Wheel Pair I_c

Wheel Pair II ;
$$\bar{\pi}_1 = 0.244 \, \pi_4^{-0.772}$$
 (59)
Wheel Pair III ; $\bar{\pi}_1 = 0.378 \, \pi_4^{-0.772}$ (60)

Wheel Pair III ;
$$\bar{\pi}_1 = 0.378 \, \pi_L^{-0.772}$$
 (60)

From these equations and Figure 29, was generated

$$\bar{\pi}_1 = 2.36 \; \pi_2^{1.53}$$
 (61)

Finally, the complete functional relationship becomes

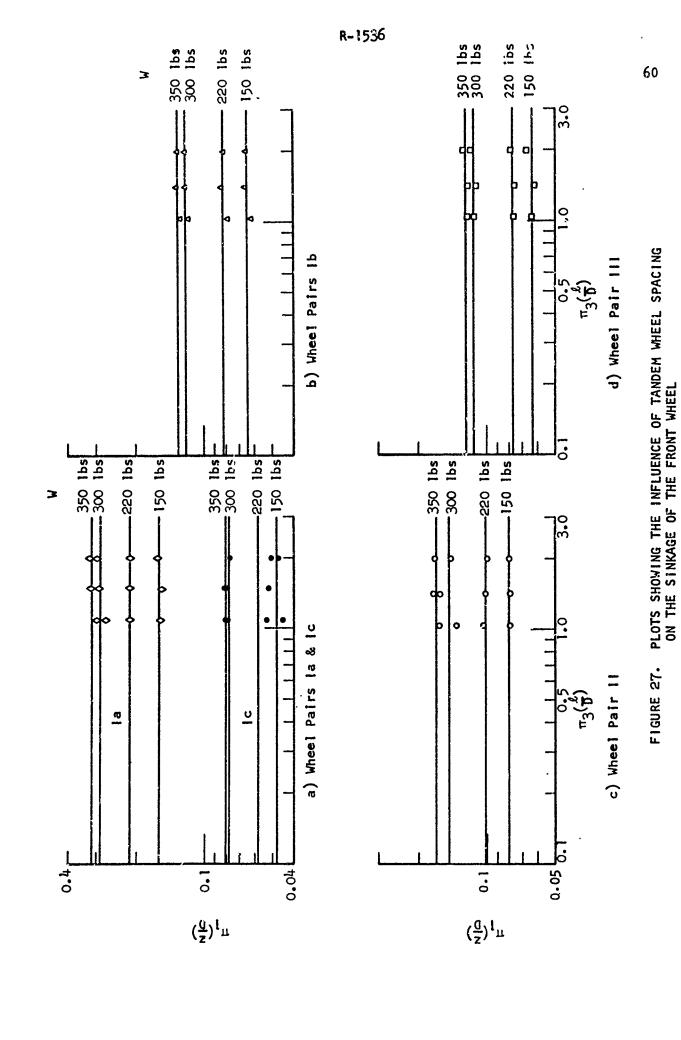


Table VIII

I

T

.

-

17. 28

-

CHESCAL !

孫

至

 π_1 and π_4 Values for Sinkage of the Front Tandem Wheel

				•	Wheel Pair No.	r No.				
Load (1b)	12	П.	1E	اه ۳	 '≀⊭	د #4	۱Ę	<u>ت</u> تا	 1 E	=
150	0.159	2.241	0.064	6.348	0.048	14.248	- 80	0.080 0.100	- 3	#
220	0.213	1.532	0.082	0.082 4.340	0.058	14/2 6	3	i 6	200.0	9.806
300	0.286	1, 124	0.120	3, 184	0 078	1	20.0	0.102 2.803	0.077	0.077 6.706
350	0.312	0 959				/+1./	0.148	2.057	0.114	4.919
			0.130	81/3	0,080	6.100	0.168 1.755	1.755	0.124 4.198	4.198

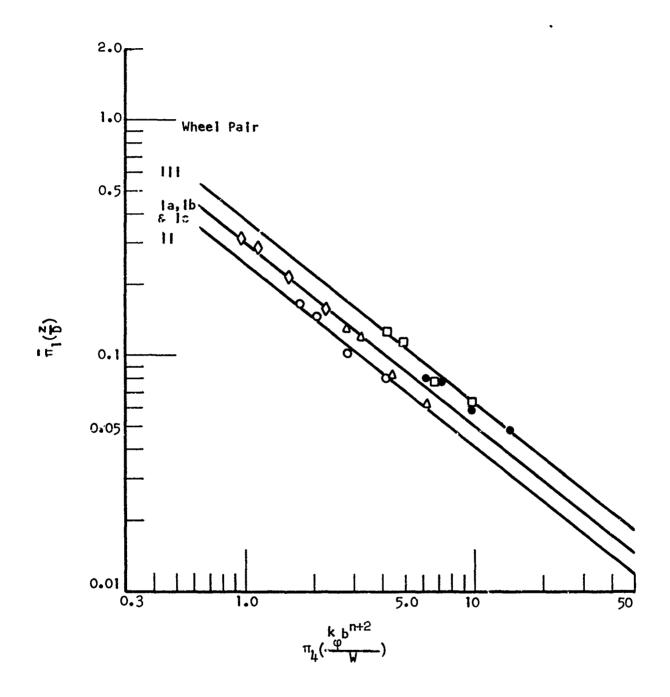
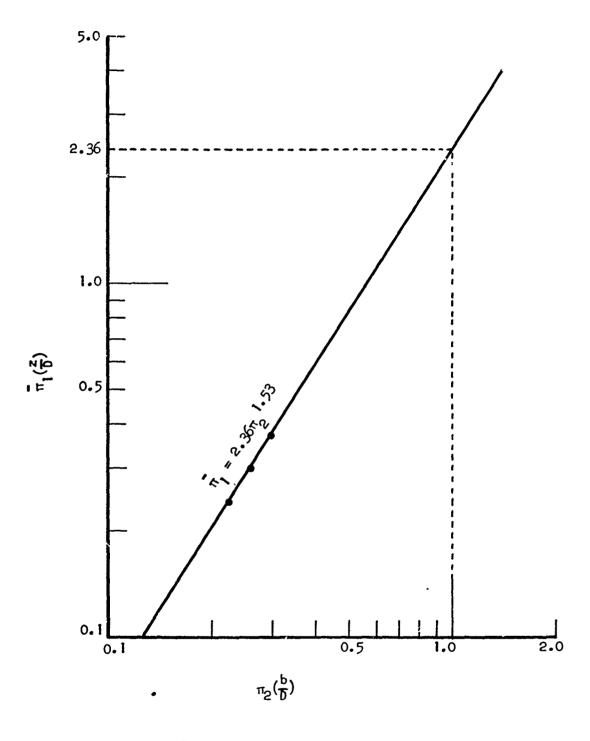



FIGURE 28. PLOTS SHOWING THE RELATIONSHIP BETWEEN WHEEL WIDTH AND THE SINKAGE OF THE FRONT TANDEM WHEEL

]

FIGURE 29. $\bar{\pi}_1$ vs π_2 FOR FRONT TANDEM WHEEL SINKAGE

$$\bar{\pi}_{1} = F(\pi_{2}, \pi_{1}) = \frac{F(\bar{\pi}_{2}, \pi_{1})F(\pi_{2}, \bar{\pi}_{1})}{F(\bar{\pi}_{2}, \bar{\pi}_{1})} = \frac{(0.3\pi_{1}^{-0.772})(2.36\pi_{2}^{-1.53})}{0.3}$$

$$\bar{\pi}_{1} = 2.36 \pi_{2}^{-1.53} \pi_{1}^{-0.772}$$
(62)

Equation (62) may be approximated by

$$\bar{\pi}_1 = 2.5 \pi_2^{3/2} \pi_4^{-3/4}$$
 (63)

Or, in the problem variables, Equation (63) becomes

$$z_{F} = \frac{2.5 \text{W}^{0.75}}{\text{p}^{0.5} \text{b}^{0.75} \text{n}_{\text{k}_{\omega}}^{0.75}}$$
(64)

A comparison of Equation (63) with the measured data is presented in Figure 30.

Bekker's prediction for rigid wheels with $k_{\phi} = 4.7$ and n = 1.15

$$z = \frac{0.53 w^{0.6}}{b^{0.6} b^{0.3}}$$
 (56)

For the same parameters, Equation (64) becomes

is

$$z_{F} = \frac{0.78 \text{w}^{0.75}}{0.86 \text{ n}^{0.5}} \tag{65}$$

For the rear wheels of a tandem pair, a log plot of π_1 vs. π_3 also predicts that the exponent of π_3 should be zero (see Figure 31). Table IX and the corresponding plot (Figure 32) yields the following relationship:

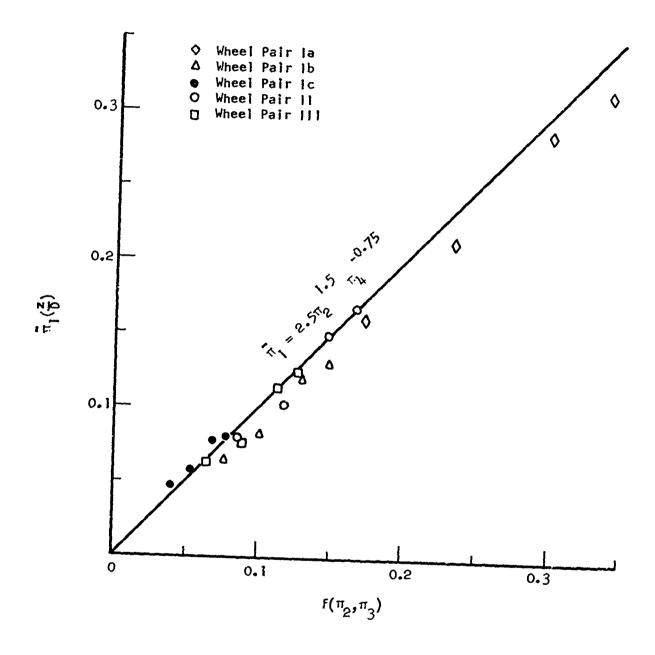
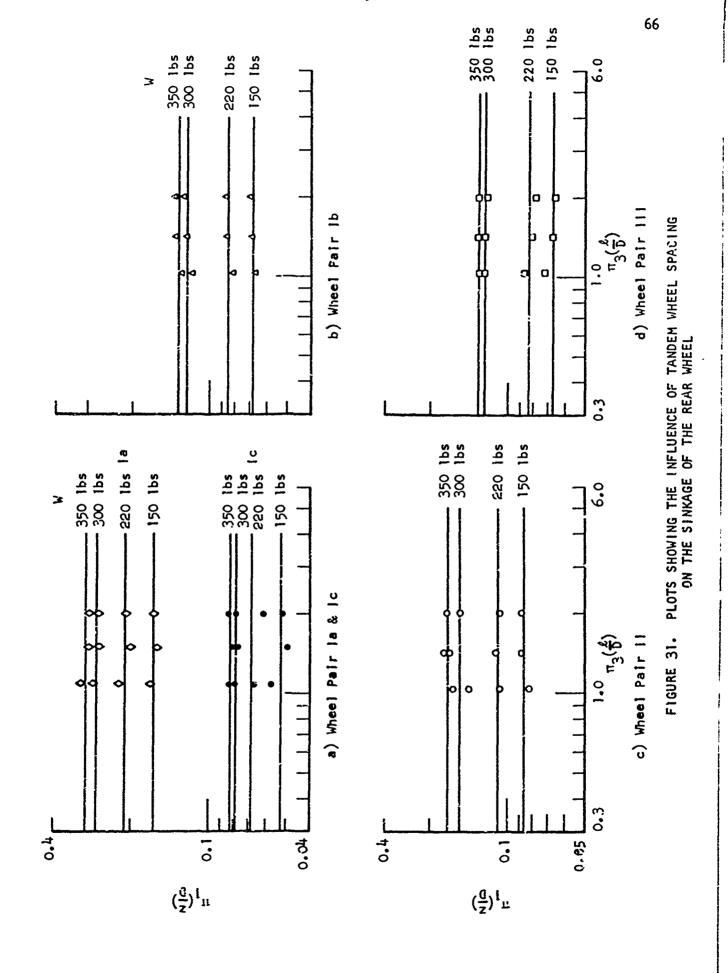



FIGURE 30. COMPARISON OF EQUATION (63) WITH MEASURED DATA

XI elde.

THE STATES OF TH

I

I

the second of the second secon

 $ec{\pi}_{f l}$ and $\pi_{f l}$ Values for Sinkage of the Rear Tandem Wheel

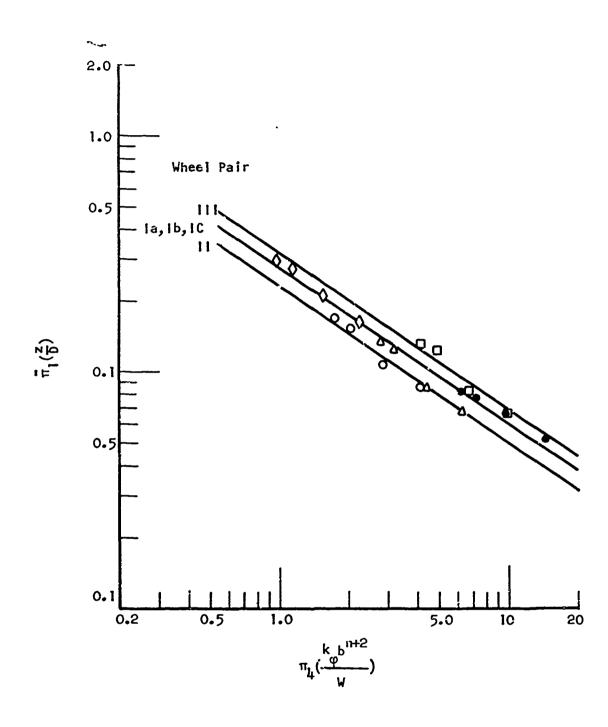


FIGURE 32. PLOTS SHOWING THE RELATIONSHIP BETWEEN WHEEL WIDTH AND THE SINKAGE OF THE REAR TANDEM WHEEL

.

Wheel Pair I_a
Wheel Pair I_b;
$$\bar{\pi}_1 \approx 0.275 \, \pi_4^{-0.662}$$
 (66)
Wheel Pair I_c

Wheel Pair II ;
$$\bar{\pi}_1 = 0.23 \, \pi_4^{-0.662}$$
 (67)
Wheel Pair III ; $\bar{\pi}_1 = 0.318 \, \pi_4^{-0.662}$ (68)

Wheel Pair III ;
$$\pi_1 = 0.318 \, \pi_4^{-0.662}$$
 (68)

From these equations, Figure 33 may be generated, yielding

$$\bar{\pi}_1 = 1.2 \, \pi_2^{-1.1}$$
 (69)

Finally, the complete functional relationship is:

$$\bar{\pi}_{1} = F(\pi_{2}, \pi_{4}) = \frac{F(\bar{\pi}_{2}, \pi_{4})F(\pi_{2}, \bar{\pi}_{4})}{F(\bar{\pi}_{2}, \bar{\pi}_{4})} = \frac{(0.275 \, \pi_{4}^{-0.662})(1.2 \, \pi_{2}^{-1.1})}{0.274}$$

$$\bar{\pi}_{1} = 1.2\pi_{2}^{-1.1} \, \pi_{4}^{-0.662}$$
(70)

which can be simplified to

1

1

TE

$$\tilde{\pi}_1 = 1.2 \, \pi_2 \, \pi_4^{-2/3}$$
 (71)

In the problem variables, Equation (71) becomes

$$z_R = \frac{1.2 \text{ W}^{2/3}}{k_{\omega}^{2/3} (b^{2n+1})^{1/3}}$$
 (72)

Interestingly, the parameter D is missing from Equation (72).

Equation (71) is compared with the measured data in Figure 34. Agreement is relatively good, but all the data appear to be a little higher than the fitting curve.

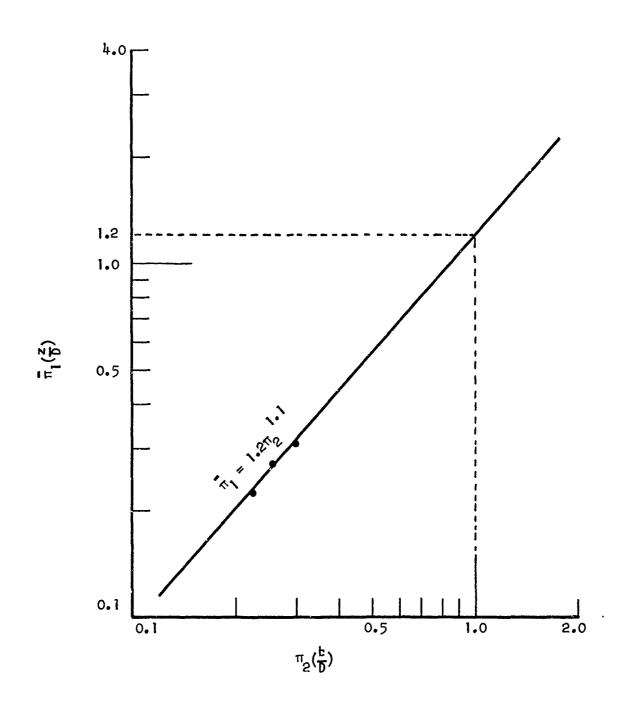


FIGURE 33. π_1 vs π_2 FOR REAR TANDEM WHEEL SINKAGE

farmer !

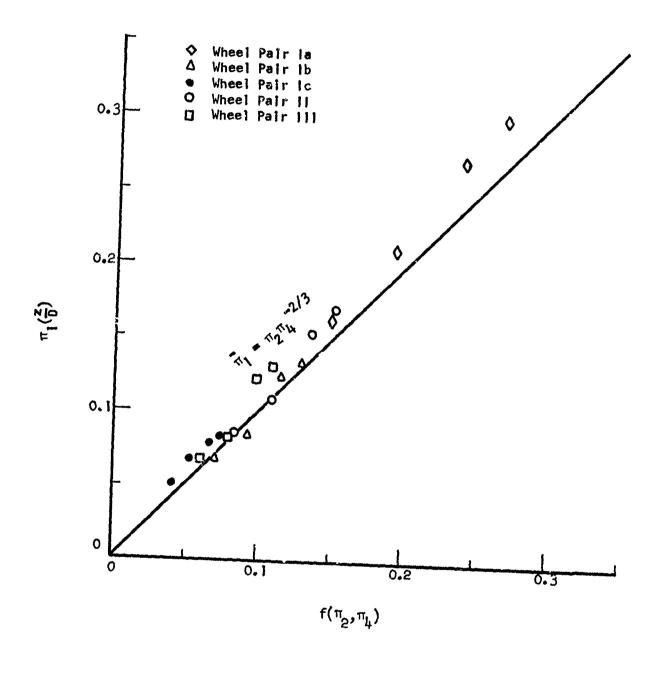


FIGURE 34. COMPARISON OF EQUATION (71) WITH MEASURED DATA

Again, comparing Equation (72) with Bekker's Equation (56),

$$z = \frac{0.53 \text{ W}^{0.6}}{\text{b}^{0.6} \text{ p}^{0.3}}$$
 (56)

for the same parameters, Equation (72) becomes

$$z_{R} = \frac{0.427 \text{ w}^{0.66}}{\text{b}^{1.1}} \tag{73}$$

This equation is quite different from Bekker's. However, Bekker was not attempting to predict the sinkage of the following wheel of a tandem wheel configuration; hence no rational agreement was expected.

F. Single Wheel Tests

1. Comparison of Dual and Single Wheels

Tables X, XI and XII show averaged data for wheel sinkage and motion resistance for Wheel Pairs \mathbf{I}_a , \mathbf{I}_b and \mathbf{I}_c , respectively. The dual wheel results are an average of all tests for a given weight as it has been demonstrated that the wheel spacing had little or no effect on the results.

Data contained in Tables X, XI and XII show that the sinkage of dual wheels was generally less than that of a single wheel. For Wheel Pair I_b , dual wheel sinkage was approximately 30% less than single wheel sinkage and, for Wheel Pairs I_c , it was approximately 14% less. However, for Wheel Pair I_a , dual wheel sinkage was greater than single wheel sinkage except at the smallest load. A probable cause for this occurrence was that the skid rate for the dual wheels was approximately 10% higher than that for the single wheels. The skid rate for Wheel Pairs I_b and I_c was approximately the same for both dual wheels and

Table X

enter en marie en enterente en e

1

4

Elected &

in within

Carrier A

変数

I

1

Tanasana J

Comparison of Dual and Single Wheel Performance for Wheel Pair I_a

Single Wheel Sinkage (in)*	Load (1b) First Pass	1.79	110 2.23	150 3.15	175 3.58	Single Wheel Resistance (1b)*	Load (1b) First Pass	75 35.8	110 50.6	150 80.0	175 100.0
Dual Wheel Sinkage (in)*	Load (1b)	150 1.31	220 2.29	300 3.26	350 3.69	Dual Wheel Resistance (1b)*	Load (1h)	150 49.1	220 111.9	300 171.1	350 209.3

* Note: Data is an average of all tests at each weight.

Table XI

A CONTROL OF THE PROPERTY OF T

Comparison of Dual and Single Wheel Performance for Wheel Pair $\mathbf{l_b}$

Single Wheel Sinkage (in)*	Load (1b) First Pas:	75 0.94	11.0	150 1.46	175 1.67	Single Wheel Resistance (1b)*	Load (1b) First Pass	75 15.8	110 28.7	150 41.4	175 55.6
Dual Wheel Sinkage (in)*	Load (1b)	150 0.52	220 0.75	300 1.14	350 1.37	Dual Wheel Resistance (1b) $^{f *}$	Load (1b)	150 18.8	220 49.5	300 80.5	350 115.9

* Note: Data is an average of all tests at each weight.

Table Xil

THE PROPERTY OF THE PROPERTY O

I

The party of the same

~P

.....

7

1

S. S. Carlo

-

Comparison of Dual and Single Wheel Performance for Wheel Pair L

Single Wheel Sinkage (in)*	Load (1b) First Pass	75 0.60	110 0.79	150 0.96	175 1.08	Single Wheel Resistance (1b) *	Load (1b) First Pass	75 14.65	110 18.85	150 33.90	175 37.55
Dual Wheel Sinkage (in) [*]	(9)	0.54	0.61	0.87	46.0	Dual Wheel Resistance (1b) st	16)	12.9	27.1	44.3	59.3
Dual Whe	Load (1b)	150	220	300	350	Dual Whee	Load (1b)	150	220	300	350

 \star Note: Data is an average of all tests at each weight.

the single wheel.

Data contained in Tables X, XI and XII show that the motion resistance of dual wheels was greater than that of a single wheel. The motion resistance of dual wheels for Wheel Pair I a was approximately 47% greater than for the single wheel. The percentages for Wheel Pairs I_b and I_c were 40% and 23%, respectively.

2. Comparison of Tandem and Single Wheels

Tables XIII, XIV and XV show averaged data for wheel sinkage and motion resistance for Wheel Pairs l_a , l_b and l_c , respectively when connected in tandem. These tables show that for Wheel Pairs I_h and I_c the rear tandem wheel sank slightly deeper than the front tandem wheel. The second pass of the single wheel also sank deeper than the first pass for these wheel pairs. The front tandem wheel sank slightly deeper than the rear tandem wheel for the three highest weights for Wheel Pair $\mathbf{I}_{\mathbf{a}}$. The first pass of the single wheel also sank deeper than the second pass for all weights for this whael pair. The probable cause of the greater front wheel and first pass sinkage for Wheel Pair No. ! was determined to be due to a greater amount of rut refill from the loose flowing sand. A comparison of Figures 35 and 36 will demonstrate the difference in rut refill. Figure 36 shows one wheel of Wheel Pair I making a second pass while carrying a load of 175 pounds. It will be noted that the sand had filled in to the center from both sides after the first pass. Figure 35 shows one wheel of Wheel Pair I making a second pass while carrying a load of 175 pounds. In this case, it will be noted that very little rut refill

Table XIII

Andread Section & Section &

-

1

1

The transport of the and the second s

Comparison of Tandem and Single Wheel Perrormance for Wheel Pair I

							- -	- Ca	0. V	y. 02	176.0
e (in)*	Second Pace	7 1	. o	2.75	3.0	nce (1b)*	Second Page	α κα	60.0	60.0	76.0
Single Wheel Sinkage (in)*	First Pass	1.79	2,23	3.15	3.58	Single Wheel Resistance (1b)*	First Pass	35.8	50.6	80.0	100.0
Sing	Load (1b)	75	110	150	175	Singl	Load (1b)	75	110	150	175
je (in)*	Rear	2.40	3.09	4.00	14.41	Resistance (1b)*		45.1	80.6	117.0	-
eel Sinkag	Front	2.35	3.15	4.24	4.60	el Resista		54	80	117	150.1
Tandem Wheel Sinkage (in)*	Load (1b)	150	220	300	350	Tandem Wheel	Load (1b)	150	220	300	350

 st Note: Data is an average of all tests at each weight.

Table XIV

-

Comparison of Tandem and Single Wheel Performance for Wheel Pair 1_b

						Total	24.1	41.2	72.7	98.4
Second Pass	1.1	1.33	1.73	1.97	ance (1b)*	Second Pass	8.3	12.5	31.3	43.8
First Pass	±6.0	1.14	1.46	1.67	le Wheel Resista	First Pass	15.8	28.7	41.4	55.6
Load (1b)	75	110	150	175	Sing	(1) Peon	75	110	150	175
Re B	1.42	1.78	2.56	2.79	ce (1b)*		.7	0.	ω.	£.
Front	1.34	1.69	2.51	2.74	Resistan		29	95	73	96.3
Load (1b)	150	220	300	350	Tandem Whee	Load (1b)	150	220	300	350
	Front Rea Load (1b) First Fass	Front Rea Load (1b) First Fass 1.34 1.42 75 0.94	Front Rea Load (1b) First Fass 1.34 1.42 75 0.94 1.69 1.78 110 1.14	Front Rea Load (1b) First Fass 1.34 1.42 75 0.94 1.69 1.78 110 1.14 2.51 2.56 150 1.46	Front Rea Load (1b) First Fass 1.34 1.42 75 0.94 1.69 1.78 110 1.14 2.51 2.56 150 1.46 2.74 2.79 175 1.67	Front Rea Load (1b) First Fass 1.34 1.42 75 0.94 1.69 1.78 110 1.14 2.51 2.56 150 1.46 2.74 2.79 175 1.67 heel Resistance (1b)* Single Wheel Resistance	Front Rea Load (1b) First Fass Second Pass 1.34 1.42 75 0.94 1.1 1.1 1.33 1.69 1.78 110 1.46 1.73 1.73 1.75 1.67 1.97 1.97 1.67 1.97 1.97 1.67 1.97 1.67 1.97 1.67 1.97 1.67 1.97 1.67 1.97 1.67 1.67 1.97 1.67 1.67 1.97 1.68 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.8	Front Rea Load (1b) First Fass Second Pass 1.34 1.42 75 0.94 1.1 1.1 1.33 2.51 2.56 150 1.46 1.73 1.73 2.74 2.79 1.75 1.67 1.67 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.9	Front Rea Load (1b) First Fass Second Pass 1.34 1.42 75 0.94 1.11 1.33 1.59 1.78 110 1.146 1.33 1.73 1.50 1.46 1.73 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97	Front Rea Load (1b) First Fass Second Pass 1.34 1.42 75 0.94 1.11 1.33 1.59 1.78 1.09 1.14 1.33 1.33 1.34 2.51 2.56 150 1.46 1.46 1.73 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97

* Note: Data is an average of all tests at each weight.

Table XV

TREPRETER AND ASSESSED ASSESSED AND ASSESSED ASSESS

Ti di

1

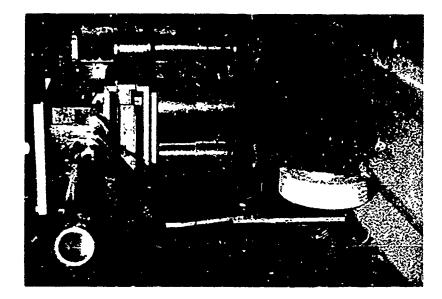
ij

-

Successive &

7

THE STREET


1

	4
Pair	
Wheel	
for	
Performance	
Wheel	
Single	
and	
Tandem	
ų. O	
Comparison	

Tandem	Tandem Wheel Sinkage (in)"	(In)*	SIn	Single Wheel Sinkage (in)*	ge (in) [‡]	
Load (1b)	Front	Rear	Load (1b)	First Pass	Second Pass	
150	1.29	1.42	75	0.60	0.73	
220	1.45	1.65	110	0.79	0.90	
300	2.1.1	2.11	150	96.0	1.17	
350	2.16	2,22	175	1.08	1.27	
Tandem	Tandem Wheel Resistance (1b)	1ce (1b) ***	S	Single Wheel Resistance (1b)*	tance (1b)*	
Load (1b)			Load (1b)	First Pass	Second Pass	Total
150	14.6		75	14.65	6.95	21.6
220	28.2	C.	110	18.85	16.55	35.4
300	33.3		150	33.9	13.2	47.1
350	7,6,2		175	37.55	20.6	48.2

* Note: Data is an average of all tests at each weight.

*** Note: Data was neglected as crroneous (explained in para VII,c,2).

NOT REPRODUCIBLE

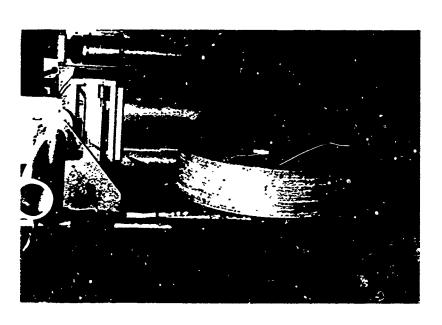


FIGURE 35. SECOND PASS OF SINGLE WHEEL OF WHEEL PAIR IC

FIGURE 36. SECOND PASS OF SINGLE WHEEL OF WHEEL PAIR IS

had taken place after the first pass due mainly to the greater wheel sinkage. It was felt that the second pass of the wheel from Wheel Pair I and not sink as far as the first pass because of the excessive amount of rut refill and the soil compaction created by the first pass.

These Tables also show that the single wheel sinkage was 25% to 45% less than either the front or rear sinkage of the tandem wheels. Since the load for the tandem wheels was exactly twice that for the single wheel, it was concluded that the difference in sinkage was caused by an unbalance in the distribution of the load on the two wheels caused by the moment of the motion resistance on the two wheels about the mounting plate pivot. Instead of the load being divided evenly between the two wheels, the front wheel was loaded with more than half of the load. This meant that the front tandem wheel was subjected to a greater load than the single wheel; hence the front tandem wheel sank deeper than the first pass of the single wheel.

The data contained in tables XIII, XIV and XV show that the motion resistance of both passes for the single wheel was approximately 17% greater than that for the tandem wheels for Wheel Pair No.

I.a. This was caused by the large amount of rut refill coupled with the fact that the single wheel was subjected to a greater load during the second pass than was the rear tandem wheel thus causing more motion resistance. For Wheel Pair Ib, the motion resistance of the tandem wheels was greater than that for both passes of the single wheel for the two lowest weights. For the two higher weights the resistance to motion was approximately equal for the tandem wheels

and both passes of the single wheel. The tandem wheel motion resistance for Wheel Pair I_c will not be discussed because the data was neglected as erroneous (_ par. Vii,c,2).

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

It may be concluded from the results of this study that a similitude approach may be utilized to develop functional relationships with which wheel performance in dual and tandem configuration may be predicted. The study demonstrated that spacing of the wheels had a negligible effect on sinkage and resistance to motion for both dual and tandem towed wheels in sand. A comparison of the prediction equations from this study with those developed by Bekker showed that the equations were all of the same general form but the constants and exponents were frequently quite different.

A comparison of single wheel tests with dual wheel tests showed that the results of this study generally agreed with those of Roma and McGowan.

Comparison of the single wheel test results with tandem wheel test results was difficult because of the uneven load distribution on the wheels in tandem configuration. This study showed that it would be difficult to predict the performance of tandem wheels mounted in a bogie type suspension with multiple passes of single wheels, because the load distribution on the wheels would be different.

ecommendations

It is recommended that no further tests of this type be conducted utilizing towed wheels. Tests should be conducted, however, utilizing driven dual and tandem wheels. The tests should be conducted in at least two different soils to determine whether the similitude approach can be utilized under conditions where $\mathbf{k}_{_{\mathbf{C}}}$ and \mathbf{c} are not zero.

IX. REFERENCES

- 1. Murphy, Glenn, <u>Similitude in Engineering</u>, The Ronald Press Company, New York, 1950.
- 2. Rouch, K.E. and Liljedahl, J.B., "The Effect of Dual Tire Spacing on Tractive Performance in Soil," a paper presented at the 60th Annual Meeting of the American Society of Agricultural Engineers, June 27-30, 1967, Transcript No. 67-137.
- 3. Freitag, Dean R., Wheels on Soft Soils and Analysis of Existing

 Data, Technical Report No. 3-670, U.S. Army Engineer Waterways

 Experiment Station, Vicksburg, Mississippi, January 1965.
- 4. Melzer, K.J. and Knight, S.J., <u>Dual-Wheel Performance in Sand</u>,
 American Society of Agricultural Engineers Paper No. 71-132,
 June 1971.
- 5. Holm, I.C., "Multi-Pass Behavior of Pneumatic Tires," <u>Journal of</u>
 Terramechanics, Volume 6, No. ?, 1969.
- 6. Liston, R.A. and Martin, L.A., "Multi-Pass Behavior of a Rigid Wheel in Deformable Soils," U.S. Army-Tank Automotive Command, Warren, Michigan.
- 7. Southwell, P.H. and Marwood, M.E., "The Influence of Front Wheel Path Upon the Performance of a Following Wheel," <u>Proceedings of the Second International Conference of the International Society for Terrain-Vehicle Systems</u>, University of Toronto Press, Quebec City, Ontario, Canada, 1966.
- 8. Reed, I.F., Cooper, A.W. and Reeves, C.A., "Effects of Two-Wheel and Tandem Drives on Traction and Soil Compacting Stresses,"

 Transactions of the American Society of Agricultural Engineers,

- Volume 2, No. 1, St. Joseph, Michigan, 1959.
- 9. Clark, S.J. and Liljedahl, J.B., "Model Studies of Dual and Tandem Wheels," Transactions of the American Society of Agricultural Engineers, Volume 12, No. 2., St. Joseph, Michigan, 1969.
- 10. Liljedahl, J.B., Clark, S.J. and Apple, D.L., "Performance of Dual and Tandem Fraction Tires - A Model Study," Society of Automotive Engineers Paper No. 650693, September 1965.
- 11. Bekker, M.G., <u>Introduction to Terrain-Vehicle Systems</u>, The University of Michigan Press, Ann Arbor, Michigan, 1969.
- 12. Knight, S.J. and Rula, A.A., "Measurement and Estimation of the Trafficability of Fine-Grained Soils," <u>Proceedings of the First International Conference on the Mechanics of Soil Vehicle Systems</u>, Torino, Italy, 1961.
- 13. Cohron, G.T., "The Soil Sheargraph," ASAE Paper No. 62-133, June 1962.

X. ACKNOWLEDGEMENTS

This study was completed under the Department of Defense Themis Project (Contract DAAEO7-69-c-0356). It would have been difficult to complete without the assistance of the following individuals.

Dr. I. Robert Ehrlich, my faculty Advisor, whose advice and assistance was invaluable in the preparation of equipment, conduct of tests and analysis of results.

Dr. Louis I. Leviticus who assisted in the preparation of instrumentation and development of calibration techniques.

Captain Freddie G. Smith, United States Army who assisted in construction of the wheels, preparation of other test equipment, calibration of equipment and conduct of the tests.

Mrs. Alice Stollmeyer, Miss Dolores Pambello and Miss Nancy Crane for typing this manuscript.

Innumerable members of the Davidson Laboratory staff for their assistance in other problems.

XI. VITA

Gary D. Swanson was born in New Castle, Pennsylvania on May 2, 1939. He graduated from Youngstown University in May 1962. At Youngstown University he majored in Mechanical Engineering and was commissioned as a Second Lieutenant in the United States Army upon graduation.

He has served at Sandia Base, Albuquerque, New Mexico, Cha Rang Valley, Qui Nhon, RVN, and Aberdeen Proving Grounds, Maryland prior to attending Stevens Institute of Technology. He currently holds the rank of Major, U.S. Army Ordnance Corps.

He is married to the former Rosalie Kay McRae of Albuquerque, New Mexico and has a son, David.

Ting.

[]

Walkerson (Co.)

APPENDIX I

Carriage Velocity, Wheel Velocity and Skid Rate Calculations

A. Carriage Velocity:

$$v_c = \frac{\text{(Number of event markers passed)} \times \text{(1.5 feet)}}{\text{(time elapsed in seconds)}}$$

- B. Wheel Velocity
 - 1. Dual and Tandem Wheels

$$V_W = \frac{\text{(Number of wheel bolts passed)} \times \text{(Circumference of wheel in ft)}}{\text{(time elapsed in seconds)} \times 4}$$

2. Single Wheel

$$V_W = \frac{\text{(Number of wheel bolts passed)} \times \text{(Circumference of wheel in ft)}}{\text{(time elapsed in seconds)} \times 5}$$

C. Skid Rate

$$B = 100 \times \frac{V_c - V_w}{V_c}$$

Appendix II

Calculation of Tandem Front and Rear Wheel Sinkage

in tandem configuration the two wheels were mounted on stub axles which were then bolted to a 61 inch long steel plate. The sinkage at the center of the plate was the sinkage measured by the recorder. To determine the sinkage of the front and rear wheels the movement of one of the ends of the steel plate was measured. By utilizing similar triangles it was possible to determine the sinkage of the front and rear wheels

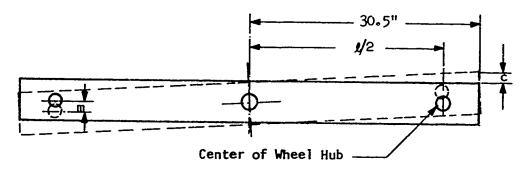


Figure 37. Sinkage Calculation Diagram

By similar triangles:

$$\frac{c}{30.5} = \frac{m}{\ell/2} \quad \therefore \quad m = \frac{c\ell}{61}$$

Sample calculation:

$$\ell = 16.125$$

$$c = +.16$$

$$z_c = 4.1$$

$$m = \frac{c L}{61} = \frac{(0.16) \cdot (16.125)}{61} = 0.0423$$

$$z_F = z_c - m = 4.1 - 0.0423 = 4.0577 \approx 4.06$$

$$z_R = z_c + m = 4.1 + 0.0423 = 4.1423 \approx 4.14$$

APPENDIX III

Procedure for Combining $\boldsymbol{\pi}_{\boldsymbol{l}}$ Terms by Multiplication General Equation

$$\pi_{1} = F(\pi_{2}, \pi_{4}) = \frac{F(\tilde{\pi}_{2}, \pi_{4})F(\pi_{2}, \tilde{\pi}_{4})}{F(\tilde{\pi}_{2}, \tilde{\pi}_{4})}$$

where:

i

 $\vec{r}(\vec{\eta}_2, \eta_4) = \text{(relationship generated in terms of } \eta_4$ with η_2 held constant)

 $F(\pi_2, \bar{\pi}_4) = \text{(relationship generated in terms of } \pi_2$ with π_4 held constant)

 $F(\bar{\eta}_2, \bar{\eta}_4)^* =$ (constant determined by substituting constant values of $\bar{\eta}_2$ and $\bar{\eta}_4$ into the appropriate equation)

Sample Calculation: (From DL : Wheels - Sinkage)

$$F(\bar{\eta}_2, \eta_1) = 0.218 \, \eta_1^{-1.11} \, (\bar{\eta}_2 = 0.26)$$

$$F(\pi_2, \bar{\pi}_4) = 2.73 \, \pi_2^{1.9} \, (\bar{\pi}_4 = 1)$$

$$F(\bar{\eta}_2, \bar{\eta}_1) = 0.218(1)^{-1.11} = 0.218(1) = 0.218$$

$$F(\bar{\pi}_2, \bar{\pi}_4) = 2.73(0.26)^{1.9} = 2.73(0.0775) = 0.212$$

••
$$F(\bar{\eta}_2, \bar{\eta}_4) = \frac{0.218 + 0.212}{2} = 0.215$$

The $F(\bar{\eta}_2,\bar{\eta}_1)$ terms should be equal when calculated with each of the two relationships. If they are not, their average value should be utilized.

APPENDIX III (continued)

$$\pi_{1} = F(\pi_{2}, \pi_{4}) = \frac{(0.218 \, \pi_{4}^{-1.11})(2.73 \, \pi_{2}^{1.9})}{0.215}$$

$$\pi_{1} = 2.77 \, \pi_{2}^{1.9} \, \pi_{4}^{-1.11}$$

APPENDIX IV

Tables of Test Data

THE BUTCH THE PROPERTY OF THE

T

17/m

Test Data is Contained in Tables XVI through XLIIi

Table XVI: Dual Wheel Performance of Wheel Pair No.

= 220 12		æ	%) 39.4 45.6	34.3	33.9	34.6	31.1 34.1 39.3	34.8	47.6	47.9	0.0g	48.7	47.1 47.3	·.e	.
10-18: W	5,n+2) -	:	2.241	•	2.241	•	2.241	5	1.332		1.532			1.532
. Tests		L/D		0.263		0.263		0.263	· S	6.50		0.263			0.203
= 150 lb,	nes	g/s		0.102		0.17		0.258	9			0.17		0	0.250
≥	Calculated Values	g/z		0.088	9	0.082		0.101	731	3		0.153		7	0.15/
Tests 1	Calcul	R/W		0.358		0.292		0.334	202			0.503		107	764.0
, b = 3.88 in.; Tests 1-9:		>3	c) (ft,/sec) 0.093 0.097		0.111 0.106 0.109	;	0.114 0.121 0.103	;	0.093		0.082 0.085	ľ	0.088		1 f
= 14.75 in.,	eters	>	(ft/sec) 0.154 0.178	0.151	0.171 0.160 0.168	;	0.166 0.183 0.170	!	0.178	0.171	0.160	ł	0.166	0.170	!
41 = Q	d Parameters	œ	(1b) 58.6 66.7	35.4 53.6	15 E E E E E E E E E E E E E E E E E E E	43./	33.2 57.1 60.0	50.1	113	<u> </u>	<u> </u>	110.6	917	8 6 6	7.00
eters:	Measured	N	(ir.) 1.36 1.53	1.29	28.5	Z.	1.18	1.49	0,010,0 0,014,0	; d	2.28 2.36	2.25	0.00 7-4-6	o, 0	ñ.,
Wheel Parameters:									 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
Wheel		Test	8 − Ø	3 Avg.	4 	Avg.	ν ∞ υ	Avg.	10 10	13	¥ 72	Avg.	91.	× 2	n (

Table XVII: Dual Wheel Performance of Wheel Pair No. I

4.1.4

The second

1

-

A Comment

W = 350 1b		ω	(%) 57.0 56.4 57.3	52.5 53.0 52.5	48.9 48.8 49.9	56.8 60.1 57.0 58.0	53.5 54.3 55.5 55.5	5.5.4.0 5.5.3.0 5.8.0 8.0
28-36:	k bnt2	₽ 3	1.124	1.124	1.124	0.959	0.959	0.959
a , Tests		D/D	0.263	0.263	0.263	0.263	0.263	0.263
= 300 lb,	nes	a/s	0.102	0.170	0.258	0.102	0.170	0.258
19-27: W	Calculated Values	g/z	0.228	0.220	0.215	0.258	0.236	0.257
in.; Tests 19	Calcul	R.∕≥	0.598	0.566	0.545	0.620	0.560	0.615
= 3.88 in.;		>3	(ft/sec) 0.069 0.069 0.067	0.071 0.080 0.079	0.090 0.094 0.091	0.069 0.063 0.070	0.072 0.077 0.076	0.081 0.085 0.083
4.75 in., b	ameters	>0	(ft/sec) 0,160 0,159 0,162	0.163 0.167 0.169	0.176 0.184 0.181	0.160 0.159 0.162	0.163 0.167 0.169	0.176 0.184 0.181
D = 14.	Par	œ	(1b) 169 180 190 179.7	190 155 165 170	170 161 160 163.7	200 230 220 216.7	222 175 190 195.7	215 216 216 215.7
ers:	Measured	N	(in) 3.3.4 3.37	3.6	3.88 3.16 1.7.	~~~~ ~~~~~	3.89 3.10 3.45 3.48	3.78
Wheel Parameters:	-	S	(ni) 2.1 2.1 2.1	0,0,0,0,0 12,12,12,12,12,12,12,12,12,12,12,12,12,1		 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0,0,0,0,0 12,12,12,12,12,12,12,12,12,12,12,12,12,1	ω ω ω ω ω
Wheel		Test	No. 19 20 21 Avg.	22 24 34 34 9.	25 27 Avg.	28 30 Avg.	31 32 33 Avg.	34 35 36 Avg.

	W = 220 16		ω	(%) (%)	0.0 0.0	15.6	12.8	13.1	1 2	13.4		9.11	ם ס	 	23.1	21.3	<u>ق</u> و.و	21.4	22.3	ر روز درز	26.0	22.2	23.2	0 v) () () ()	
		k b ⁿ⁺²	9 ≥				6.348			6.348	•			6.348			•	4.34				4.34			म यह	† ? · †
- Q	Tests 46-54:		g/q				0.259			0.259				0.259				0.259				0.259			020	7.00
	W = 150 lb,	nes	0/8				0.126			0.170	•			0.259			,	0.13%				0.170			010	0.00
Wheel Pa	37-45: W =	Calculated Values	0/2				0.023			0.026	•			0.024			,	0.034			•	0.038			720	750.0
mance of	Tests 37-	Calcul	R/W				0.117			0.146	•			0.112			,	0.206			,	0.25			α[ο	0.1.0
Dual Wheel Performance of Wheel Pair No.	5.41 in.; Tests		>3	(ft/sec)	0.1 0.1 0.1 0.1	0.148	!	0.144	1 -	± ;	•	0.146	1,00	0	0.128	0.140	0,140	i i	0.129	0.124	0.12/	í	0.127	0.135	0.150	i i
	in., b =	ters	>"	(ft/sec)	0.167	0.175	:	0.166	9.19	0.103	;	9.16	0.105	C !	0.167	0.178	0.175	ŧ	0.166	9.10	0.103	1	0.166	0.165	0.1/2	t t
le XVIII:	= 20.875 in.,	d Parameters	œ	(1b)	28.5	20.02	17.5	21.1	23.3	ر ب ب		21.7	0.0	16.8	58.6	34.0	43.0	45.5	55.7	54.3	725.	55.2	53.7	38.0	, o	0 0 0
Table	ameters: D =	Measured	N	<u>ت</u>	2.625 0.49	625 o.	625 0.	.56 0.	.56 0.	3.56 0.60	,		-	5.41 0.51	Ö	2.625 0.60	Ö	ö	.56 0.	3.56 0.78	., o	.56 0.	.41 0	5.41 0.61	J. C	1 .
	Wheel Parameters		Test	Š.	37	2 6	Avg.	40	41	A 450	• n	£:	‡	₹. 8¥.	, 94	47	84	Avg.	64	22	51	Avg.	52	<u></u> 23	4 4 1	Avg.

	_
	el Pair No.
	<u>.</u>
	<u>ዋ</u>
3	T Whee!
٩	o
1 Performance	י בי ופיינים
ee]	
£	Ц
Dual Wheel)
Table XIX: D	: D = 20.815 in h
•	Wheel Parameters:

Ţ

A thing

等意

The state of the s

W = 350 16		α	° (%)	28.0 29.4	7.88	o -	24.7	<u>}</u> ;	86.9	54.4	27.3	25.3	67.7	35.55 23.55 23.55	34.7	34.7	34.7	33.3	1 70	54.0	32.6	31.2	32.1
64-72:	Ċ	k b H	3	3.184			3.184				3.184			2.718			2.718			0 1	۷./۱۵		
lb, Tests		p/0		0.259			0.259			0.259			0.259			0.259			0.259				
	Values	S/D			5 0.126			0.170			0.259			0.126			0.170			0.259			
55-63; w	Calculated Values	z/0			0.288 0.056			0.054			,	0.054			0 0	0.062			0.067		0.067		
ests	Cal						0.256				0.260			0.334			0.339			0.320			
			0.119		:	0.175 0.121	:	!	0.127	0.122	ָּהָיבָּ פּיבּילָ	0	0.100	0.111	:	0.106	0.108	!	: :	4	0.114		
Parameters		(ft/sec)	0.165	0.170	! ?	0.161	!	!	•	97.0			0.153		:	. 162		1 1			. <u> </u>	;	
		(16)	88.6	855 855 87) & 8	63.0	80.0	0.	70.0	76.0	78.0	124.0	110.0	116.7	v.0	0.0	0.0	118.7	107.0	0	109.0	0.8.	
Measured	N	ٔ ٿَ.	 		2.	66.5	7.12		2,6	1.10	1.13	1.36	1.25	1.30	? .	7.40	07.1	1.40	1.35	1.49	1.34	V	
	st. S	<u> </u>	2.625	vi oi	w.	3.56	, w	u	י יע	5.41	·	a (Q C	2.625 625	r	ب م د	3.56	3.5	•	•	5.4]	•	
	Te	No.	ינאנ	Avg.	58	629 60	Avg	9	62	ું છે	AV g	3 ,	3,6	Avg.	, ,	86	69	Avg.	20	~ {	Avo.		

	W = 220 1b				8)	7.0	7.5	ص م.	- 0	8.	7.1	6.7	, v	6.9	;	0°.4	\ ,	10.7	10.0	ه پ	0.0	۰ 8	10.2	ພຸດ ພໍາ	٧.٠	ω .	4.0	o o v o .	
	s 82-90:	0 t	χ Φ	3				0,70	4.740			370 71	2.1.			14 oh	7.540			2/2	1.7			1.75	. / . /			9.741	
	c lb, Tests		0/4					0.050				0.250				0 250				0 250	((1.)			000	6,433			0.259	
Pair No.	W = 150	/a lues	8/0	;				001				0.170				0.259				0.100				0.170	2			0.259	
of Wheel	73-81:	Calculated Values	2/0	į		•		0.0118				0.024	•			0.023				0.0133				0.028				0.026	
ormance (6.98 in.; Tests 73-81:	Calc	R/¥					0.063				0.099				0.099	i.			0.105				0.136				0.132	
Dual Wheel Performance of Wheel	b = 6.98 in		>			0,135		•	0.143	0.133	0,131	; ;	131	- - - -	0.143	. 1	0.130	0. 30	0,133	1	0 137	0.128	0.129	1	001.0	0.142	0.145	:	
XX: Dual	27.0 in., b	ameters	>	(ft/sec)	0.146	0.145	0.146	:	0.152	0.143	0.142	:	141	0.156	0.159	!	0.146	0.145	0.146	f	0.152	0.143	0.142	Į.	141	0.156	0.159	!	
lable X	D = 27	Par	œ	(16)	6	ω ω	9.9	9.5	13.2	15.4	15.4	14.6	14.	15.4	14.3	14.6			23.5		28.3	29.5	30.6	23. 4.		28.3		•	
	eters:	Measured	N	Ξ	Ö	Ċ.	o		Ö	o	ဝ	o	0.62	0.65	0.62	0.63	0.38	0.32	0.39	0.36		0.80		0.75	0.70	0.70	0.70	0.70	
	Wheel Parameters		S	(iii)	2.75	2.75	5.74	2.75	4.56	4.56	4.56	4.56	7.0	7.0	7.0	7.0	2.75	2.75	2.75	2.75	4.56	4.56				7.0			
;	Whee		Test	No.	73	7.	75	Avg	92	77	8.	Avg.	ይ	8	≅ .	Avg.	정 8	8	1 8	Avg.	85	8	87	Avg.	88	£	85 ¢	8	

Pider.

W = 350 1b		æ	% ;	1.00	ຸ ພຸຜຸ	10.7	11.7	و. و. د.	10.7	13.8	7.4.7	15.3	13.9	13.7	13.8
100-108:	r bn+2	9 3	:		7.147		7.147		7.147		6.10		6.10		6.10
c Tests		D/D			0.259		0.259		0.259		0.259		6.259		0.259
Pair No. = 300 lb,	lues	g/s			0.102		0.170		0.259		0.102		0.170		0.259
of Wheel F 91-99: W =	Calculated Values	g/z			0.025		0.036		0.035		0.027		0,040		0.037
ormance of Tests 91-	Calcu	R 7.			0.132		0.157		0.153		0.153		0.183		0.171
Dual Wheel Performance of Wheel Pair No., b = 6.98 in.; Tests 91-99: W = 300 lb		>3	(ft/sec)	0.157	0.145	0.128	0.134	0.153	0.132	0.138	0.136	0.122	0.130	0.147) - :
.	ers	>	(ft/sec)	0.174	0.159	0.144	0.152	0.170	0.148	0.160	0.159	0.144	0.152	0.170	- !
Table XXI: D = 27.0 in	Parameters	~	(1b)	40.0	40.0 39.6		46.7	16.7 14.5	45.9	51.5	53.6	65.0 62.5	65.0 64.1	0.00	0
••	Measured	N	(in)		0 0 0 0 0 0 0 0		0.08		0.95	•	0.75	1.00	1.10	888	.00
Parameters	Ē	S	(in)	2.75	2.75 3. 2.75		4.56 1. 4.56	7.0		÷.75	0 io i	4.56		7.0	
Whee } P		Test	Š.	9 9	93 Avg	48	96 8vg	97	99 Avg	001	102 Avg.	103	105 Avg.	106	100 Avg.

Table XXII: Dual Wheel Performance of Wheel Pair No. Whee

The second secon

1.

W = 220		Ω	(%)	ο. ο.	16.7	!	12.3	16.6	13.6	13.6	14.6	14.2	15.1	!	14.7	1	30.0	[30.0	25.8	20.2	22.2	22.7	ł	23.8	i (23.x
118-126:	k b n+2	9	k				4.10				4.10				4.10				2.803				2.803			0	2.803
ests		b,/D					0.225				0.225				0.225				0.225				0.225			0	0.225
Pair No. 1 ≖ 150 lb,	nes	s/D					0.126				0.170				0.259				0.126				0.170			1	0.259
whee! Po	Calculated Values	z /D					0.036				0.029				0.036				0.052				0.041			1	0.058
rmance of sts 109-1	Calcula	R ¥					0.162				0.127				0.143				0.266			•	0. 216				0.200
Dual Wheel Pertormance of Wheel Pair No. 11 b = 4.7 in.; Tests 109-117: W = 150 lb, T		>	(ft/sec)	0.150	0.137	:	:	0.152	0.152	0.152	:	0.145	0.143	;	; ;	!	0.121	1	!	0.135	0.140	0.137	!	i	0.128	!	:
: Dual v n., b = 1		>	(ft/sec)	0.167	0.164	;	:	0.182	0.176	0.176	1	0.170	0.168	! !	1	ı	0.164	! !	:	0.182	0.176	0.176	:	i	0.168	! !	1
20.875 in.,	1 Parameters	œ	(19)	18.9	26.6	1	22.7	20.0	و 0.	9.4	17.8	17.6	22.6	i i	20.1	54.9	56.7	1	55.8	44.3	44.0	47.7	45.3	53.8	55.8	1 4	24.5
D H	Measured	N	(in)	0.70	•	1	0.75	99.0	0.62	0.55	0.60	0.70	0.80	:	0.75	1.07	1.08	1	3.08	0.87	0.82	o. 90.	0.86	1.20	20	! ?	. zo
eters:	ž	S	(in)	2.625	2.625	:	2.625	•	3.56	٠ċ	ŵ	•	5.4	!	5.4	2.625	2.625	1	2.625	•	3.56	•	•	5.4	5.4		7.4
neel Parameters:		u				Ξ	Avg.	112	113	* [Avg.	115	116	117	Avg.					121	122	123	Avg.	124	55,	O J	AVG.

b = 4.7 in.: Tests 127-135: W = 300 lb, Tests 136-144: W = 350 lb Table XXIII: Dual Wheel Performance of Wheel Pair No. 1! D = 20.875 in..

1

Ţ

I

I

T

1

-

025 H W		ထ	8	;	27.3	:	27.3	25.4	8.7	25.6	25.9	27.0	26. 6	28.0	27.2	1	35.4	:	35.4	34.9	34.7	8 0.	32.8	32.5	32.1	31.0	35.1
W = 500 15, 165ts 150=144; W = 550	k.bn+2	2	:				2.057				2.057				2.057				1.755				1.755			1	1.755
o, lests		9/p					0.225				0.225				0.225				0.225				0.225			•	0.225
2005	lues	۵/۵					0.126				0.170				0.259				o.18%				0.170				0.259
	Calculated Values	0/z					0.065				0.058				0.069				0.082			•	0.076			0	0.082
ests 14/	Calcu	R/¥					0.293				0.247				0.288				0.384				0.320			1	0.337
20.0/2 in., b # 4./ in.; lests (2/1/5):		>3	(ft/sec)	i t	0.114	!	į	0.134	o.186	0.130	i i	9.186	0.129	o.186	Į į	1	0.101	i	:	0.117	0.112	0.124	i i	0.117	0.120	0.120	!
# c	sters	>	(ft/šec)	;	0.157	1	;	0.180	171.0	0.175	<u>{</u>	0.173	0.176	0.176	1	:	0.157	:	!	0.180	0.171	0.175	:	0.173	0.176	0/1.0	į
د/٥٠٥×	d Parameters	œ	(16)	88.0	86.0	81.0	85.0	70.0	75.0	70.0	71.6	77.0	80.0	94.0	83.6	128.0	132.0	122.0	130.6	117.0	124.0	85.7	108.9	113.0	0.0	0.021	114.3
	Measured	7	(in)	1.40	1.35	1.30	1.35	1.86	1.22	1.14	ا. ا	1.40	1.40	1.52	1.44	1.68	1.74	1.72	1.71	1.70	1.76	1.30	1.58	1.70	1.65	 ?!	0.70
Parameters	Ž	S	(1n)	8	8	89	Ø	Ň	ŵ	3.56	ŵ	•	5.4	5.4	•	2.625	2.625	2.625	21625	٠ċ	3.56	'n	'n	•	4.4	•	•
wheel rar		Tests	No.	127	128	129	Avg.	130	131	132	Avg.	133	134	135	Avg.	136	137	138	Avg.	139	140	141	Avg.	142	143	₹.	Avg.

=	- -
Š	2
, ed	5
~	;
ک پی	
90	
erforman	4000
<u>م</u>	٠
¥.	3
Dua!	9
Table XXIV: Dual Wheel Performance of Wheel Pair War in	20.875 in
	_
ć	wheel rarameters:
1.16.0.1	eeee

W - 220 16			മ	(%)	8.	1.1	10.5		-	- α 	12.5		2	0.0	10,50	1.3	17.0	19.7	18.6	18.4	18.2	•	8.8	8.8	15.2	10.3	16.3
154-162:		k 5°+2	9	•				9.806				9.806				9.806			,	6.705				6./05			6.705
No. 111 Ib, Tests			p/0					0.297				0.297				0.297				0.297			000	762.0			0.297
el Pair N W = 150 I	/a 1,10c		0/S					9.18				0.170				0.259			,	3			0,71	2			0.259
e of Wie 5-153: V	Calculated Values		2/0					C. 025				0.025				C C C C C C C C C C C C C C C C C C C			000	4.00			0.020				0.029
el Performance of V in.; Tests 145-153:	Sel		X X X				700	0.00			101	751.0			0	2			0.190				0.201				0.166
Dual Wheel Performance of Wheel Pair No. b = 6.2 in.; Tests 145-153: W = 150 lb,		>	M / 5 / / 5 /	(1 L/ 5 eC)	2.48		יים זיים זיים		2.50	9	ָּהָ הַיּה		0.148	0.152	<u></u> ;	_	-	0.138	- 1		0.133	0.142	!	0,140	0.142	6.137	!
	rameters	>	(ft/sec)	(256.7)	797	200	? !	121	797	25	;		20.0	0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		771 0	0.168	0,170		0.167	0.165		<i>!</i>	0.165	0.170	ري د اود	;
able 20.8	とうしゅし ひゅうつ	œ.	Ξ	4	. ((50.00 50.00	8	~	202	23		171	<u> </u>	8		40	#		41.	42.0	4.3		4 io	0.0	rv c	יי כ	;
	2 5 0	N	ت	0.5	0	25 0.50	5.0.5	0.5	0.5	0.0		_	, .,	0.59	0.53	0.6	9.0	0.6	0.0	0.60	ŵ١	•	Ď	w	0.60	jω	
Parameters		st	ت	w W	o, O	o, o	9. 9.	3.5	2.5	0 3.56	w.	'n	່ທີ	3 5.4	9. 5.	4 2.62	2.62	2.625	. 2.62	3.56	M c	~. เง๋ เก	n .	เงเ	יט יז יבי ב	į'n	i
Whee 1		<u>.</u>	c.	₹.	7.	14	¥	14	±	_ <u>~</u>	Ą	15	15,	<u></u>	Avg.	154	155	951	8 4 8	157	7 . 2 .	A 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	70 Y	997		Avg.	1

Whe

I

S Charles

W = 350 lb		æ	8	25.5	23.8 1.8	23.7	· ~	% .9.	29.0	27.3	19.9	23.9	21.3	21.0	31.7	32.8	30.4	31.6	31.3		55.V	32.2	29.9	28.7	, v	67.7
172-180: 1	k bn+2	9 3	E			4.919	•			4.919				4.919				4.198			001	4.198			901.7	1. 200
III Tests		p/p				0.297				0.297				0.297				0.297			0	0.297			00	0.63/
air No. 300 1b,	nes	0/S				0.126				0.170				0.259				0. 1.0				0.170			0	7 7 7
Wheel Pa	Calculated Values	2/0				770.0				0.049			•	0.0				0.054			1	0.057			720	0.00
l Performance of Wh in.; Tests 163-171:	Calcul	R ∕¥				0.213			,	0.368				0.206				0.290			0	0.312			200	0.405
Dual Wheel Ferformance of Wheel Pair No. b = 6.2 in.; Tests 163-171: W = 300 lb,		>3	(ft/sac)	0.124	0.128	0.131	01	0.124	0,121	;		0.131		:	0.114	0.113	0.117	;	0.111	0.115	5.1.0	!	0.114	0.120	2	:
: Dual W	rameters	>'	(ft/sec)	1.067	 86.	97.0	ואָנ	0.169	0.171	;	0.163	0.168	0.156	i	0.167	0.168	0.168	:	0.161	0.169		!	0.163	0.168	0.120	:
Table XXV: 20.875 in.,	P.	æ	_	œ	62.0	28°0	ς α	80.0	80.0	80.3	58.0	63.0	6.	9.19	3	103.0	on a	_		107.0				0.66	א כ	ע
F #	Measured	N	(in)	00.	0.0	0.82	, ,	.00	9	٠.	0.90	0.90	0.95	0.92	1.14	1.14	0.1	2.12	1.20	 6::	<u>.</u> .	- 20	1.20	91:1		/1.
Parameters:	ž	s	(in)	2.625	2.625	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	י בל	3.56	3.56	3.56	5.40	5.40	5.40	5.40	2.625	2.625	2.625	2.625	•	3.56	•	•	•	4.4	•	•
heel Param		Test				165 Avg		<u>167</u>	168	Avg.	169	170	171	Avg.	172	173	174	Avg.	175	176	<i>[</i>]	Avg.	178	179	0 :	₩.g.

0 = 14.75 in., b = 3.88 in.; Tests 181-189: W = 150 lb, Tests 190-198: W=220 lb Table XXVI: Tandem Wheel Performance of Wheel Pair No. Wheel Parameters:

[.

: W=220 1b	2+0.	a a a	3				6	7.24		•	6	- - - -			· ·	עיילו			200	۶۲.۰				200-1			1, 530	177.
190-198:	Ų		n/a				670 0	0.605			900	6.50			290	0.50			26.0	603.0			690	603.0			0.963)
D, Tests	Calculated Values		7/2				-				1 4.8	2			c a	1			9				1 48	2			2.0	
w = 150 lb, lests	Calcula	2 ()	, , , ,				אלו ט				0,148				0.163				000.0				000				0.207	
		6 / 8	i L				0,157				0.157				0.161	•			0.212				0.214				0.214	
וכסרים וסוים וסק:		3	:				0.317				0.311	,			0.273)			0.395	i i			0.356	.			0.348	
•		œ	(19)	45.0	יי היי	45.0	47.5	24	78.0	76.0	46.7	70.0	0.04	43.0	41.0	מא) () () () (83.5	86.8	80.0	75.0	80.0	78.3	75.0	80.0	75.0	76.7	
		2,	¥€	2.47	5,49	2.47	2.48	2.31	2.34	2.33	2.33	2.40	5	2.39	2.41	3.07	3.5	3.27	3.27	2,95	8.00	3.09	29.95	3 10	80.8	2.97	3.05	
	rameters	Z	E	2.33	2.3	2.33	2.32	2.31	2.34	2.27	2.31	2.40	2.36	2.39	2.38	3, 13	3.12	3.13	3.13	3.25	8.99	3.25	3.16	3,10	3.16	3.83	3.16	
	ď	ပ	(i.)	Q	0.33	ď	ł		0	9.	;	0		0				0.25	î	-0.42	-0.24	-0.23	i	0	-0.08	-0.26	ŧ	
	Measured	N	<u> </u>	ю. ф.				2.31	2.34	2,30	•	2.40	2.40	2.39	ſ	3.20	3.05	3.05	1	3.10	2.90	3.17	·		3.12	3.10	ı	
		અ	<u></u>	16.125	Ξ.	~	$\overline{}$	•	2 8 8	•	•	29.50	29.50	29.50	29.50	•	•	16.125	•	21.80	•	•	•	•	29.50	•	•	
	1	Test	%	<u> </u>	182	183	Avg.	184	285	98 	Avg.	187	88	68 -	Avg.	190	<u>.</u>	<u>8</u>	Avg.	193	70.	195	Avg.	961	197	86 	Avg.	

Ţ

下流

A constant

factors of

- Sections

Ĩ

k_bn+2	N 1.124	1.124	1.124	0.959	0.959	
Ŋ	b/0 0.263	0.263	0.263	0.263	0.263	
Calculated Values	1.09	1.48	2.0	1.09	1.48	
alculat	z _R /D	0.265	0.269	0.314	0.292	
_	2 _F /D	0.292	0.298	0.297	0.317	
	R/W 0.382	0.395	0.395	0.405	0.435	
	R (1b) 119.0 115.0 109.0 114.3	120.0 117.0 118.0	120.0 121.0 115.0	145.0 140.0 141.6	155.0 152.0 150.0 152.3	159.0 155.0 155.0
	28 4.28 4.14 4.04	8.83.9 9.83.97	3.96 3.91 3.97	4444 63.63 44.63	4.35 4.34 5.36 1.31	4.30
ameters	7. (in) 4.06 4.06 4.04	4.23 4.31 4.30	4.44 4.36 4.39 4.40	4.44 4.38 4.37 4.39	1.65 1.74 1.68	4.70
Par	(in) 0.30 0.16 0.14	-0.37 -0.61 -0.64	00.00	0.44	-0.43 -0.46 -0.68	-0.42
Measured	z (in) 4.20 4.10 4.00	4.05	4.20 4.20 4.15	4.50	4.50 4.50 4.50	4.50
_	(1n) 16.125 16.125 16.125 16.125	22.23.28 22.28.29 22.28.29 8.29.29	88.50 8.50 8.50 8.50	16.185 16.185 16.185 16.185	22.22.29	29.50
	Test No. 199 200 201 Avg.	202 203 204 Avg.	205 206 207 Avg.	208 209 210 Avg.	212 213 Avg.	2000

Wheel Parameters: D = 20.875 in., b = 5.41 in.; Tests 217-225;W = 150 lb, Tests 226-Table XXVIII: Sndem Wheel Performance of Wheel Pair No. 1_b

W = 220 1b	, n+2	A	3				6.31.0	0.240				6 25.0	0.348				21.0	0.240				4 240	0111				4 240). 				4.340
226-234:	nes	D/9					0 250					030	0.50%				0 250	0.50				0.259					0.259			Ų.		0.259
Tests	ted Val	g/p					75.	•				171	•				2.0	i I				<u>-</u>					1.41			Mary Mary		0.5
150 1b,	Calculated Values	Z _R /3	•				0.066					0.069					0.070	•				0.082				,	0.087			ž		100.00 100.00
= M. C>> -		z _F /D				,	0.062				,	9.08					0.065				1	0.078				č	0.084				0.082	
113 5753		8 ₹					20.0					0.189					0.214				0	0.248				o c	0.250				0.258	1
	(~ ((ar)	, o	6,6	8 % 8 %	0.00	25.0	900		, oc	20.2	30 2	, ,	52./	33.0	- v	53.0			52.0	· · · ·	54.0	60.09	י אַנ	֓֞֞֜֝֞֜֞֝֓֓֓֓֞֝֓֓֓֓֓֞֟ ֓֓֞֞֞֓֞֞֞֞֞֞֞֞֓֞֞֞֞֞֞֓֓֞֞֩֞֡		57.0	57.0	56.0	56.7	
•	۴	8	(11)			7.7	?	1.43	1.43	1 43	7 - 7	<u>.</u>	1,45	,,,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 	?	<u>.</u>	1.73	77	22		.– ਲੂੰ	さ.	1,74		•	- 85	<u>.</u> 8	1.81	1.82	
ameters		μ <u>.</u>	1.25	7 %		1.28		1.37	1.37	1.37	1.37	· ·	1.35	1 27	7,7		:	.56	1.67	1.67	.63		- 78	1.78	- 89. -	1.74		ر ا	~ %	1.71	1.70	
Measured Para		(ii)	0.18	0.07	0.07	} }	•	0.07	0.07	0.07	. !	,	0.07	0.07	0.07	;	;	0.	0.07	0.07	i		70.0	0.07	0.07	!		/o.o	= ;	0.07	;	
Measu		(in)																														
	8	(in)	21.80	21.80	21.80	21.80	00	00.00	ئ ئىز	20.50	29.20	71.	41.7	41.75	41.75	41.75	01 00	00.10	00.12	86.12	21.80	מש שמ			24.50	29.50	11 75	72.17	7.	7	c/ · L	
	Test	No.	217	218	219	Avg.	200	3 5	ָבֶע עע	בבב בבב	Avg.	000	() d	#22 22.2	225	Avg.	y n	200	700	, גלקס	Avg.	553	030	220) \	AVG.	232	733	720	Avo	• ກ	

Table XXIX: Tandem Wheel Performance of Wheel Pair No. Wheel Parameters: D = 20.875 in., b = 5.41 in.; Tests 235-243: W = 300 Tb.

1

S. very

W=350 1b	j	x No.	3				(, , ,			č	3.184			Č	3			; ;	8./18			1	2./18			2.718	
lests 244-252;	9		p/0				0	0.25Y			c c	0.639			0	0.259			c.c	70.0			0	700			0.259	
	ed Valu		8/D				7	5			1 4.1	÷			c	, V			7				1 7.1	<u>-</u>			2.0	
500 IB,	Calculated Values	1	R/U				α				126	1			701 0	121.0			200	3			761 0	;			0.136	
E . C . S		5	7 2				0.117	;			0,100				101	į` ;			0,127	ì			721 0	}			6.131	
		ρV	E				0.240) - -			0.238				0.250	\ \ !			9.266				0.279	•			0.280	
		22	(16)	73.0	75.0	200	72.0	0 02	2,57	20.07	71.3	0 77	0.72	74.0	75.0	ر د د	9	0 0	93.3	9		97.6	97.5	. 0	0.00	97.0	98.0	
•		Z	(i.)	2.51	24.2	2.44	2.46	2,50	2,65	2.63	2.59	0 63	200	9,65	2.65	27.3	22	5,62	2.68	2,75	5.63	2.85	2.84	200	;	83	2.84	
•	ameters										2.54	a	เล่	ิณ	2.53				2.66	ณ่	์	Q	2.79	ď	2.75	તાં	તાં	
	Measured Para	υ	(in)	0.04	0.00	0.00	1	0.00	0.10	0.07	;	0.07	0.11	0.07	i i	0.07	g.00	0.00	i	0.00	0.10	0.07	; i	0.07	0.07	0.07	i	
3	Measur		(in)																									
		બ	(in)	21.80	21.80	21.80	21.80	29.50	29.50	29.50	29.50	41.75	41.75	41.75	41.75	21.80	21.80	21.80	21.80	9.50	38.50	29.50	29.50	41.75	41.75	41.75	41.75	
		Test	No.	235	236	237	Avg.	238	239	240	Avg.	241	242	243	Avg.	カル	245	546	Avg.	247	248	249	Avg.	250	521	252	Avg.	

Wheel Parameters: D = 27.0 in., b = 6.98 in.; Tests 253-261; W = 150 lb, Tests 262-270: W = 220 lb Table XXX: Tandem Wheel Performance of Wheel Pair No. i

THE PARTY OF THE P

ב ככח ום	k.bn+2	9 3	14.248	14.248	14.248	9.741	9.741	9.741
* :0/>->o>	S	D/Q	0.259	0.259	0.259	0.259	0.259	0.259
iests 200	ed Value	g/g	1.09	1.55	2.0	1.09	1.55	2.0
, al 051	Calculated Values	z _R /D	0.057	640.0	0.051	990.0	0.077	0.061
	J	z _F /D	0.045	0.052	0.047	0.053	0.079	0.050
= M : 0>-CC> s:		R/K	0.103	0.092	0.100	0.133	0.121	0.136
Z/.u in., b = 0.30 in.; lests		R (1b)	16.3 2.00.4	. <u> </u>	15.0 15.0 15.0	30.4 29.5 27.8 29.2	8888 6.686 6.866	31.0 29.5 30.0
0.30 0.30		z _R (in)	<u> </u>	33.1.35	 8.6.6.6.	1.68	1.60	1.59 1.67 1.67
a (.n.	arameters	2F (in)	8.2.2.6.8.	1.38	£6.5.5.	1.48	5.000.	1.4.1
ı	Δ.	c (in)	0.30	-0.05 -0.04 -0.05	0.05	0.20	0.00	0.10
rers: D	Measured	z (in)	1.35	1.35	1.35	1.58	1.49	1.50
wneel rarameters		ه (in)	88.50 88.50 89.50 50.50	41.75 41.75 41.75 41.75	54.0 54.0 54.0	89.50 89.50 89.50	41.75 41.75 41.75 41.75	54.0 54.0 54.0 54.0
Muee		Test No.	253 254 255 Avg.	256 257 2°8 Avg.	259 260 261 Avg.	262 263 264 Avg.	265 266 267 8vg.	268 269 270 Avg.

Table XXXI: Tandem Wheel Performance of Wheel Pair No. 1 Wheel Parameters: D = 27.0 in., b = 6.98 in.; Tests 271-279: W = 300 lb.

Constitution of the second sec

-

= 350 lb	, n+2	α •	3				1	/+1-/				/*!*/			; ;	/+1-/			001	001.0			901	0000			6,100
288: ₩	Se	2	0 /0				Ç	V. A.			0	V. 63Y			5	V. 625			030	6.63			010	6.573			0.259
	ed Value	0/0	a R				2				2				c	, v			0					<u>}</u>			2.0
300 lb, Tests	Calculated Values	2 /5	à À				0.079				770 0				0 0 28	2			0.083				0.080				0.083
M		z_/D	i.				0.079				0.079				0.077				0.081				0.082				0.077
1 0.70 12: 1 1 1 2 2 7 1 - 12 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		R∕¥					0.109)			0.113	•			0.113				0.131	•			0.130				0.133
		œ	(36)	33.0		, c.	32.8	36.0	0 0	0 0	33.0	34.0	37.0	37.0	34.6	176.0	45.0	120	45.7	0.74	47.0	43.0	45.3	50.0	746.0	‡ :0	46.7
		N N	(in)	2, 15	2	0	2.13	2.07	27.20	2.07	2.09	1,93	70	2.10	2.7	20,05	2.25	2.25	2.25	2,15	20,00	2.15	2.16	2.14	2.34	82°	2.25
ameters.	מווערעו פ	ΖĘ	Ü.	2.05	2.17	2.14	2.12	2.17	20.75	2.13	2.14	1.99	2.16	2.10	2.08	2.15	25.25	2.18	2.18	2.25	0 0	2.2	2.21	2.06	2.16	2.02	2.08
, A	5	U	(in)	0.10	-0.04	-0.04	1	-0.07	0.00	-0.04	:	0.00	0.05	0.00	i i	0.10	0.00	0.10	;	-0.07	0.00	-0.04		0.05	0.10	0.15	;
Measured	3	N	(in)	2,10	2.15	2,12	1	2.12	2.12	2.10	!	1.99	2.20	2.10	;	2.20	2.25	2.25	1	2.20	2.18	2.18	!	2.10	2.25	2.15	\$ 1
₩	•	⇒ ₹	(in)	29.50	89.50	29.50	29.50	41.75	41.75	41.75	41.75	54.0	24.0	24.0	54.0	29.50		29.50		41.75	41.75	41.75	41.75	54.0	54.0	54.0	54.0
	100	200	No.	271	272	273	Avg.	274	275	276	Avg.	277	278	279	Avg.	580	188 188	282	Avg.	283	58 7	285	Avg.	286	287	588 •	Avg.

and the contraction of the contr

200 lb	}	к _т ьп+2		3				4.100				4.100				4.100				2.803	•			2.803)			2.803	
708-206. W	.000-0	S	p/0	•				0.225				0.225				0.225				0.225				700				0.225)
4	lests 23	y Value	6/D	ì				100	•			177	: :			0) •			104	•			1 41	-			0	!
air No. I	150 16, 16	Calculated Values	Z /D	ر الا				0 083	000			880	•			088				901 0	•			111	-			701.0	
Wheel Pa	Ħ	Ü	٧/ ٧	4 الح ا				070	0.00			070	0.0.0			080	000.0			70.	-			9	0.10			0	•
nance of	s 289~297: W		7.Y	*				5	0.KIS			0,1	0.81/			701	17.0			090	0.200			0	0.N/V			070	0.00
Tandem Wheel Performance of Wheel Pair No. 11	= 4.7 in., Tests		c	× ,	(1P)	31.4	31.4	33.5	32.0	34.3	32.0	31.4	32.0	24.3	31.7	31.4	 53	58.0	59.0	60.0	59.U	6.50	0.09	0.09	61.3	58.0	0.00	00.0	54.5
ndem Whe	b = 4.7		1	N &	(i.i.)	1.72	1.7	1. 74	1.73	1.37	98°	8.	±8	1.86	 	 82.	1.83	2.20	2.23	2.23	25.22	2.26	2.32	2.34	2.3	2.23	2.19	0 0 0	2.24
••	in.,	ameters		۲ ب	(in)	- 4;	 99: -	%· -	1.65	1.67	-,62	_ ₽.	1.64	1.74	1.71	.57	99.1	2.18	2.17	2.17	2.17	2.06	2.12	2.18	2.12	2.2	2.13	1,95	2.10
Table XXXI	= 20.875	Par		υ	(in)	0.12	Ξ.	Ξ.	!	0.21	0.24	_	1	0.09	90.0	0.2 [S	i 1	0.04	0.08	0.08	; ;	0.21	0.21	0.17	1	0.02	0.04	0.25	ŀ
Tat	srs: D =	Measured	3	7	(in)	.68	1.70	1.70	;	1.77	1.74	1.72	i	1.80	1.76	1.68	1	2.19	2,20	2.50	1	2.16	2.25	•		a	2.16	~	:
	Parameters	2		ચ	(in)	21.80			21.80	29.50	29.50	29.50	29.50	41.75	41.75	41.75	41.75	21.80	21.80	21.80	21.80	•		•	29.50	41.75		41.75	
	Wheel			Test	No.					292	293	294	Avg.	295	296	297	Avg.	80 0 0	563 663 663	300	Avg.	301	302	303	Avg.	304	305	306	Avg.

_ Table XXXIII: Tandem Wheel Performance of Wheel Pair No.

Comment of the Control of the Contro

Ţ

I

W = 350 1b	k_bn+2	3	:				2.057				2.057				2.057				1.755				1.755			!	1.755
316-324: 1	S	D/d					0.225				0.225				0.225				0.225				0.225			1	0.225
"	ed Value	0/7					1.04				1.4.1				٥. د.				1.04				1.41			,	o.
1 Pair No 300 lb, T	Calculated Values	ZR/D	•				0.141			•	0.167				0.151			į	0.164			•	0.176				0.170
of Wheel 5: W = 3	O	z _E /D	-				0.137			,	0.161			•	0.145			1	0.162				0.174				0.170
Tandem Wheel Performance of Wheel Pair No. II b = 4.7 in.; Tests 307-315: W = 300 lb, Tests		R∕¥				-	0.257				0.331				0.272				0.323				0.353			•	0.340
lem Wheel 4.7 in.;		œ	(1P)	17.1	77.1	;	77.1	93.3	99.0	0.001	7.66	71.4	80.0	94.1	81.8	100.0	120.0	119.0	113.0	119.0	124.0	128.0	123.6	119.0	119.0	119.0	119.0
Tandem $b = 4.7$		7	(ii)	2.90	2.98	!	2.94	3.46	3.51	3.48	3.48	2.95	3.00	3.48	3.14	3.16	3.60	3.55	3.43	3.67	3.68	3.69	3.68	3.48	3.55	3.66 3.66	3.56
XXXIII: 875 in.,	rameters	7 1	(in)	2.90	2.85	1	2.86	3.34	3.39	3.36	3.36	2.85	3.00	3.24	3.03	3.10	3.52	3.53	3.38	3.59	3.60	3.69	3.63	3.62	3.49	3.56	3.56
Table XX = 20.87	Pal	υ	(in)	0.00	0.21	;	1	0.12	0.12	0.12	i	0.08	0.00	0.17	l i	0.08	0.12	0.04	1	0.08	0.08	0.00	i	-0.10	0.04	0.08	:
Δ	Measurec	И	(in)	2.90	2.90	!	;	3.40	3.45	3.45	!	2.90	3.00	3.36	l l	3.13	3.56	3.54	! !	3.63	3.64	3.69	ł	•	3.52	•	;
Farameters:		ચ	(in)	21.80	•	21.80	•	29.50	29.50	29.50	29.50	41.75	41.75	41.75	41.75	21.80	21.80	21.80	21.80		29.50			•	41.75	•	•
Wheel		Test	No.	307	308	309	Avg.	310	31	312	Avg.	313	314	315	Avg.	316	317	318	Avg.	319	320	321	Avg.	322	323	324	Avg

	= 220 1b	k b ⁿ⁺²	9	.			908 8				908.6)			000	7.000			,	6.705			•	6.705			A 70E	0.10
	4-342: W	S	Q/q				700	7.53			0.297				0	0.63/			1	0.297				0.297			700	/nu.0
=	ests 33 ¹	ed Value	8/0				100	•			1.41	:			ć	, ,				1.04				1.4.			c	o.
Wheel Pair No. 11	i50 lb, Tests 334-342:	Calculated Values	z _R /0	•			070	3/0.0			0.067	7000				000.0			•	0.087			•	0.081			0.70	0/0.0
	11 3	J	z _F /0	-			0 063				0.062)			,	0.00			,,	0.076				0.076			070	0.00
Performance of	325-333:		₹				180	2			0.171				6	0.10			-	0.242			,	0.221			αοο ο	0.000
Tandem Wheel Perfo	b = 6.2 in., Tests						1.51 28.6		1.35 24.6				1.35 24.3				1.82 50.0		1.82 53.0		1.62 48.0					1.66 50.0		
e xxxıv:	.875 in., b	arameters	Z	(in)	1.31	.30	1.33	-	1.35	 	. c	j	1.41	0.40	3 6.3	.40	1.58	1.58	1.58	1.58	1.62	9.60	ر. در	1.58	1.65	99.	70.	5
Table X	= 20.875	ᇿ	υ	•	0.25	•	•		0.00	•	• 1		-0.04	•	•	i	•	0.33	0.33	;	•	0.04	•	;	•	0.0	•	:
•	۵ :	Measured	N	(in)	1.40	1.42	1.42	l I	1.35	7.5			1.38	 8	1.39	i i	1.70	1.70	1.70	1	1.62	-,62	1.63	:	1.62	99.	٠. ده: ا	1
	Parameters		ચ	(in)			20 20 20 20 20 20 20 20 20 20 20 20 20 2	:	25.50	•	•		41.75			_	21.30	81.80	21.80	21.80	•	29.50	•	•	1.7	41.75	- r	<u>:</u>
	Whee!		Test	%	325	326	327	. 6	328	7	000 000	D	331	332	333	Avg.	334	335	336	Avg.	337	338	339	Avg.	340	341	7 10	. y v g .

Table XXXV: Tandem Wheel Performance of Wheel Pair No. 111

THE STATES AND STATES AND THE PROPERTY OF THE

W = 350 1b	k b ⁿ⁺²	9 3	:				4.939				4.919				4.919				4.198				4.198				4.198
352-360:	es S	Q/9					0.297				0.297				0.297				0.297				0.297				0.297
ts_	ed Valu	g/g					1.04				1.41				٥. د				1.04				1.41			,	o 0
300 lb, Tes	Calculated Values	z _R /D	:				0.123				0.123				0.120				0.129				0.131				0.130
whee :	O	z _F /D	•				0.114				0.12				0.119				0.122				0.121			•	0.128
mance of s 343-351		RA					0.242				0.239				0.252			,	0.263			;	0.266			(0.278
lable XXXV: landem wheel Pertormance el Parameters: D = 20.875 in., b = 6.2 in.; Tests 343-	Measured Parameters		(in) (in) (in)	21.80 2.50 0.33 2.38 2.62	21.30 2.45 0.25 2.36 2.54	21.7 2.45 0.25 2.36 2.54	. 21) 2.37 2.57	29.50 2.42 0.00 2.42 2.42	29.50 2.50 0	29.50 2.45 0.25 2.33 2.51	. 29.50 2.33 2.57	41.75 2.50 0.05 2.47 2.	41.75 2.50 0.00 2.50 2.50	41.75 2.50 0.00 2.50 2.50	, 41.75 2.49 2.51	21.80 2.67 0.25 2.58 2.76 93	21.80 2.60 0.17 2.54 2.	21.80 2.60 0.17 2.54 2.66 93	. 21.80 2.55 2.69 92	29.50 2.65 0.0	29.50 2.62 0.42 2.42 2.82	29.50 2.64 0.17 2.56 2.72	. 29.50 2.54 2.73	41.75 2.70 0.08 2.65 2.	41.75 2.69 0.00 2.69 2.69	41.75 2.69 0.00 2.69 2.69	. 41.75 2.68 2.71
Wheel		Tes	S S	343	344	345	Avg	346	347	348	Avg	349	350	351	Avg	355	353	354	Avg	355	356	357	Avg	358	359	360	Avg

Table XXXVI: Tandem Wheel Test Carriage Velocities, Wheel Velocities and Skid Rates

	æ	8	i	36.3	37.9	37.1	35.7	!	35.6	35.7	42.9	43.2	36.7	40.7	1	37.7	38.8	38.3	39.7	43.8	39.4	41.0	45.6	46.4	36.6	42.9
	8	8	1	42.8	42.1	45.4	43.4	45.6	43.7	£.2	:	I I	3	1	1	42.8	48.5	45.7	47.3	46.7	47.8	47.3	ţ	i i	i i	1
	> **	(ft/sec)	1	0.105	0.105	i i	0.118	ì	0.1.0	i i	0.097	0.086	0.117	:	į	0.103	0.103	:	0.11	0.103	0.104	;	0.092	0.090	0.116	;
	> } \	(ft/sec)	i	0.095	960.0	1	0.104	0.099	0.097	1	1	1 1	:	1	; 1	0.095	0.087	1	0.097	0.097	0.089	: :	į	ţ 1	i	1
	>°	(ft/sec)	1 1	0.165	0,169	1 1	0.184	0.183	0.171	i i	0.169	0.169	0.183	:	1 1	0.165	0.169	I I	0.184	0.183	0.171	t t	0.169	0.169	0.183	1 1
No. la	Test	No.	199	200	201	Avg.	202	203	204	Avg	205	206	207	Avg.	208	209	210	Avg.	213	212	213	Avg.	214	215	216	Avg.
Wheel Pair	<u>ه</u>																									
	8 F	(%)	37.1	3	36.8	37.0	35.0	38.5	36.5	36.7	29.7	33.5	35.4	32.9	42.3	i	44.2	43.3	38.8	45.0	37.7	39.5	43.7	45.7	42.0	ω. 145. 145.
	> * * *	(ft/sec)	0.116	1	0.130	i	0.124	0.128	1	1 1	0.166	0.160	0.131	1	0.098	1	0.111	1	0.106	6.117	0.116	1	i	0.129	0.120	;
	۷ ۳۳	(ft/sec)	0.102	t 1	0.108	t 1	0.103	0.103	0.10	:	0.145	0.129	0.111	1 1	0.094	i	0.095	i I	0.097	0.097	0.108	t s	0.116	0.11	0.099	1
	>0	(ft/sec)	0.162	0.168	0.170	:	0.158	0.167	0.173	1 3	0.206	0.194	0.172	:	0.162	0.168	0.170	i	0.158	0.167	0.173	1 1	0.206	0.194	0.172	;
	Test	No.	181	182	183	Avg.	184	185	186	Avg.	187	188	189	Avg.	190	<u>16</u>	192	Avg.	193	194	195	Avg.	196	197	198	Avg.

Table XXXVII: Tandem Wheel Test Carriage Velocities, Wheel Velocities and Skid Rates

	84 84	%	14.5	i i	1	14.5	!	15.4	i	15.4	13.7	12.8	1	13.3	18.9	19.1	!	19.0	1 2	19.5	15.4	17.4	17.8	18.9	1	19.3
	B F	88	:	:	:	!	!	;	22.6	22.6	27.6	<u>~</u> .	:	29.3	34.1	33.7	!	33.9	:	:	89 	29.3	31.7	33.5	:	32.6
	> **	(ft/sec)	0.148	;	1	;	;	0.139	ł	ť	0.142	0.145	!	1	0,140	0.141	1	1	:	0.133	0.148	1	0.135	0.135	1	:
	۸ ۲	(ft/sec)	;	1	ŧ	;	:	;	0.136	i	0.119	0.115	;	1	0.114	0.116	į	i	1	i	0.124	:	0.112	0.111	į	!
	>"	(ft/sec)	0.173	0.175	:	1	!	0.165	0.176	!	0.164	0.167	:	i i	0.173	0.175	1	i	t t	0.165	0.176	t t	0.164	0.167	!	: !
No. Ib	Test	No.	235	236	237	Avg.	238	239	540	Avg.	241	242	243	Avg.	11 12	245	246	Avg.	247	548	249	Avg.	250	251	252	Avg.
Wheel P:	æ*	8	i	8.1	6.2	7.1	7.1	10.7	4.5	11.1	0.8	11.0	& .v	9.1	:	8.4	12.9	10.6	17.7	17.1	11.8	15.5	12.6	o. [12.3	6.1
	80 F	(%)	:	17.4	17.9	17.7	ł	!	17.2	17.2	9,61	20.8	19.1	9.6	;	27.5	27.1	27.3	;	32.7	26.2	29.4	26.7	25.5	27.3	26.7
	> * *	(ft/sec)	į	0.159	0.158	1	0.186	0.158	0.161	;	0.152	0.153	0.153	i	ł	0.158	0.146	1	0.165	0.146	0.148	1 1	0.14	0.154	0.146	:
	٧ ٣ ٣	(ft/sec)	:	0.143	0.138	1	;	1	0.139	:	0.133	0.137	0.135	;	ŧ	0.125	0.122	!	i	0.119	0.124	1	0.121	0.128	0.121	;
	>"	(ft/sec)	;	0.173	0.168	;	0.200	0.176	0.168	!	0.165	0.172	0.166	i	;	0.173	0.168	i	0.200	0.176	0.168	i	0.165	0.172	0.166	:
																										Avg.

Table XXXVIII: Tandem Wheel Test Carriage Velocities, Wheel Velocities and Skid Rates

TO THE PROPERTY OF THE PROPERT

1

	<u>в</u>	%)	4.6	α 	7.3	6.7	3.1	0.0	س ئ	5. 6	15.5	<u>ښ</u>	9.9	- 0.	7.1	<u>0</u>	4.8	7.8	12.5	6.2	11.4	0.0	5.1	4,0	9.9	7.0
	8	8	13.7	7.7	14.1	13.9	12.9	15.2	7.6	6.[25.5	1 <u>₹</u> .9	14.8	18.4	16.0	17.9	17.5	17.0	16.4	12.5	19.5	16.1	14.1	18.9	15.0	16.0
	> <u>.</u> %	(ft/sec)	0.138	0.129	0.132		0.141	0.130	0.143	1	0.148	0.145	0.131	!	0.134	0.130	0.131	:	0.127	0.135	0.131	1	0.167	0.143	0.131	1
	د ح	(ft/sec)	0.125	0.121	0.123	:	0.127	0.122	0.137	!	0.131	0.134	0.119	;	0.121	o.116	0.118	;	0.121	0.126	0.119	ł	0.151	0.128	0.118	1
	>"	_																								
r No. 1	Test	No	271	272	273	Avg.	274	275	276	Avg.	277	278	279	Avg.	280	83	282	Avg.	283	58 4	5 <u>8</u> 2	Avg.	286	287	588 588	Avg.
Wheel Pair	<u>ه</u>	(%)	2.1	6.9	3.3	2.7	2.6	!	1	5. 6	1.4	٦.	3.9	ત.	2.9	9.6	5.6	3.7	4.2	2.3	5.3	٥.6	4.9	3.6	6.5	5.0
	a L	8	8.3	9. 9.	4.6	٠. د.	8.0	6.3	5.7	6.7	7.6	7.9	11.4	9.6	13.1	11.0	12.5	12.2	11.6	10.2	10.7	10.8	11.6	8.=	٠. د	æ. =
	>3	(ft/sec)	0.148	0.147	0.144	i	0.150	!	i.	i t	0.141	0.141	0.136	ŧ	0.147	0.147	0.140	: :	0.147	0.148	0.154	i i	0.136	0.138	0.132	;
	> **	(ft/sec)		0.137	0.135	2	0.141	0.142	0.154	;		0.132	0.125	1	~	0.135	0.130	i	0.136	0.136	0.145	:	~	0.126	0.124	:
	>"	(ft/sec)	. 15	0.151	0.149	;	~	0.152	9,163	į	_	0.143	0.142	!		0.151	0.149	:	_	0.152	_	1	-	0.143	Τ,	ł
	Test	No.	253	254	255	Avg.	256	257	258	Avg.	259	% %	261	Avg.	262	263	564	Avg.	265	266	267	Avg.	2 68	269	270	Avg.

Skid Rates
and
Wheel Velocities and Skid Rates
Whee 1
Test Carriage Velocities,
Carriage
Test
Whee 1
Tandem
le XXXIX:
Table

Ţ

Private P

Service Services

A Annual

		α	<u>ح</u> (8	3	10.2	;	10.2	5	יי מ מי	7.00	78.	•	i	19.4	12.0	15.7	•	1	2.5 6.13	30.9	% 7.	22	200	9.00	, v	מי. ה	;	25.0	. o.
d Rates		α	<u>د</u> ز	<u></u>	!	25.6	:	25.6 6.5	24.0	ο σ σ	30.7	32.7	•	:	7. th	32.7	38.3	i	1 4	24.0	37.6	36.2	34.5	י ט ס	77.7	0.4.0	7.,	:	37.5	35.9
s and Skid		>	W.	(Tt/Sec)	!	0.157	;	!	761.0	0.125	0.135	1		i 1 •	0.147	0.145	1	1	761 0	0.157	0.117	:	0.124	0.110	761 0		ł	;	0.137	\
Velocities																													0.114	
√hee]		>	ر روس (() se /:	: :	1/2	ŀ	!	160	154	<u> </u>	;	!		מ מינ	č Č	:	;	175	75	2	!	9	54	90	į		į (χ α τ	\ \ !
locities	r No. 11	Test	S		\ 0 0 0 0	\$ 00 \$	ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	Avg.	310	31	312	Avg.	313	, v	÷ - c	٠. د ز	W.G.	316	317	27.	2 4	D	ო თ.	320	321	Avg.	, 00	755	324	Avg.
O)	Wheel Pair																												19.0	
Wheel Test		8	8	0	י י י	2 0	0.01	1	1	:	2.0	15.3	!	22.8	18.8	7.08	``	9.6	29.0	32.6	30.4		i i	; (28.0	28.0	2	7 80	34.3	31.3
Tandem WF		> _x	(ft/sec)	0.142	0.156) 1	!		i	1 1		!	1	0.171	0.152	1	1	0.159	0.153	0.154	i		:	::	101.0	!	;	0.161	0.136	1
dole AAXIX:		> آم	(ft/sec)			0.167						;		. 145			0	0.124	72.	.130			; ;						0.110	
9 0 0 0		> [°]	(ft/sec)	0.176	•	0.193	!	1	l :	0 179	77:		1 (0.187	0.16E	1	2410	0.170	2.17	0.193	ţ	į	!	071.0	6/1.0	:	;	0.187	0.168	ł
		Test	8	289	290	<u>8</u>	Avg.	000	1 0 1 0 1 0	35	Ava	n (27,00	236 296	297	Avg.	800	000	א ני טיט	00 5	Avg.		305				304	305	306	.6

Table XL: Tandem Wheel Test Carriage Velocities, Wheel Velocities and Skid Rates

	8 8	(%)	10.8	13.5	9.0		;	1	9.1	9.7	14.5	; 	15.6	15.0	14.8	19.2	80.9	18.3	i	1	17.9	17.9	9.61	1	2.6	19.4
	8 4	(%)	ł	28.7	29.0	28.9	1	!	28.9	28.9	30.4	!	t 1	30.4	1	32.0	32.2	32.1	į.	:	30.6	30.6	30.4	:	1	30.4
	> × ×	(ft/sec)	0.143	0.136	0.141	;	i	!	0.152	;	0.133	;	c.138	ŧ 1	0.137	0.127	0.123	ŀ	;	1	0.137	1	0.125	l i	0.132	1
	> ۳۳	(ft/sec)	i	0.112	0.110	ł	i	!	0.119	!	0.108	;	1	ł	;	0.107	0.105	i	;	;	0.116	i	0.108	1	;	•
	>0	(ft/sec)	0.160	0.157	0.155	;	ł	1	0.167	1	0.146	!	o.164	i	0.160	0.157	0.155	1	ł	1	0.167	1	0.156	1 1	0.164	ł
 	Test																									
Wheel Pair No.	82 82	(%)	ł	1	1	ŀ	2.6	5	:	2.6	5.1	:	7.8	6.5	11.7	!	15.0	13.3	;	1	•	i	8.7	10.5	<u>12.</u> 1	10.4
3	8 4	(%)	16.4	í	1	16.4	13.7	;	;	13.7	1.1	16.0	15.6	14.2	54.6	ł	27.6	 %	! !	i	ŧ	1	22.8	22.9	25. 2.	23.7
	> %	_																								
	> WF	(ft/sec)	0.128	i	i	:	0.146	!	!	:	0.144	0.129	0.135	!	0.115	i	0.119	!	!	1	:	ł	0.125	0.119	0.119	i
	>°																									

Test	W	Z	R	٧ _c	v _w	В	Remarks
No.	(1b)	(in)	(1b)	-	(ft/sec)	(%)	
361	<u>75</u>	1.78	36.5	0.157	0.099	36.9	
362 Avg.	75 75	1.79 1.79	35.0 35.8	0.174	0.144 	34.5 35.7	First Pass
		,5	JJ.0			JJ • 1	
363	75	*-					
364 Avg.	75 75	1.70 1.70	23.8 23.8	0.161	0.121	24.8 24.8	Second Pass
Avg.	15	1.70	25.0			24.0	
365	110	2.20	50.3	0.157	0.097	38.2	
366	110	2.25	51.0	0.174	0.118	32.2	First Pass
Avg.	110	2.23	50.6			35.2	
367	110	2.19	41.7	0.180	0.114	36.7	
368	110	2.10	38.8	0.16:	0.111	31.0	Second Pass
Avg.	110	2.15	40.3	~	~~	33.8	
369	150	3.10	80.0	0.158	0.088	44.3	
370	150	3.20	80.0	0.160	0.092	42.5	First Pass
Avg.	150	3.15	80.0			43.4	
271	150	0.77	60.0	0.150	0 102	35.0	
371 372	150 150	2.77 2.73	60.0 60.0	0.159 0.154	0.103 0.099	35.2 35.7	Second Pass
Avg.	150	2.75	60.0	U. 154	v. 033	35.5	Second 1955
•	-						
373	175	3.55	101.0	0.158	0.086	45.5	
374	175	3.60	99.0	0.160		l.c r	First Pass
Avg.	175	3.58	100.0	***	***	45.5	
375	175	3.20	76.0	0.159	0.100	37.1	
376	175	3.20	76.0	0.154	0.095	38.3	Second Pass
Avg.	175	3.20	76.0		~~	37.7	

en de de la company de la comp

Test	W	z	R	V _c	v _w	В	Remarks
No.	(lb)	(in)	(1b)		(ft/sec)	(%)	
377 378 Avg.	75 75 75	0.96 0.92 0.94	15.3 16.3 15.8	0.151 0.154 	0.124 0.129 	17.9 16.2 17.1	First Pass
379 380 Avg.	75 75 75	1.10 1.10 1.10	6.5 10.0 8.25	0.154 0.163 	0.143 0.152		Second Pass
	110 110 110	1.16 1.12 1.14	28.8 28.5 28.7	0.151 0.154	0.117 0.125		First Pass
383 384 Avg.	110 110 110	1.35 1.30 1.33	12.5 12.5 12.5	0.154 0.163	0.145 0.155 	5.9 4.9 5.4	Second Pass
385 386 Avg.	150 150 150	1.28 1.65 1.46	32.8 50.0 41.4	0.164 0.175	0.132 0.119		First Pass
387 388 Avg.		1.65 1.82 1.73	33.8 28.9 31.3	0.168 0.200 	0.145 0.175 		Second Pass
389 390 Avg.	175 175 175	1.53 1.80 1.67	48.3 62.9 55.6	0.154 0.175 	0.115 0.126 	29.9 28.0 28.9	First Pass
391 392 Avg.	175 175 175	1.90 2.05 1.97	44.7 43.0 43.8	0.168 0.200	0.133 0.156	20.8 22.0 21.4	Second Pass

Table XLIII
Sing's Wheel Performance of Wheel Pair No. Ic

Test	W	z	×	V _c	V _w	В	Remarks
No.	(1b)	(in)	(1ե)		(ft/sec)	(%)	
393 394 Avg.	75 75 75	0.60 0.60 0.60	15.5 13.8 14.65	0.139		8.9 8.6 8.7	First Pass
395 396 Avg.	75 75 75	0.70 0.75 0.73	6.0 7.9 6.95	0.135 0.140	0.132 0.137	2.2 2.2 2.2	Second Pass
397 398 Avg.	110 110 110	0.80 0.78 0.79	19.7 18.0 18.85	0.136 0.139			First Pass
399 400 Avg.	110 110 110	0.90 0.90 0.90	13.2 12.9 16.55	0.135 0.140	0.128 0.129	5.2 7.9 6.5	Second Pass
401 402 Avg.	150 150 110	0.97 0.95 0.96	35.1 32.7 33.9	0.148 9.138	0.124 0.113	16.2 18.1 17.1	First Pass
403 404 Avg.	150 150 150	1.18 1.15 1.17	12.5 13.8 13.2	0.138 0.152		5.1 7.3 6.2	Second Pass
405 406 / vg.	175 175 175	1.10 1.05 1.08	39.4 35.7 37.6	0.148 0.138	0.122	17.6 19.5 18.5	First Pass
407 408 Avg.	175 175 175	1.28 1.26 1.27	20.6 20.6 20.6	0.138	0.128	7.3 7.3	Second Pass

方法できる

-

ļ